
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2002-09

A method for mitigating denial of service
attacks on differentiated services networks

Braun, Matthew J.
Monterey, California: Naval Postgraduate School, 2002.

http://hdl.handle.net/10945/9798

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 
 

Approved for public release; distribution is unlimited 

A METHOD FOR MITIGATING DENIAL OF SERVICE 
ATTACKS ON DIFFERENTIATED SERVICES 

NETWORKS 
 

by 
 

Matthew J. Braun 
 

September 2002 
 

 Thesis Advisor:   Geoffrey Xie 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
SEP 2002 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  A Method For Mitigating Denial Of Service Attacks 
On Differentiated Services Networks 

 
6. AUTHOR(S) Matthew Braun 

5. FUNDING NUMBERS  
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES   The views expressed in this thesis are those of the author and do not reflect the official 
policy or posit ion of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
 
This thesis presents a method for countering Denial of Service (DoS) attacks in networks that provide Quality of 
Service (QoS) guarantees using Differentiated Service (DiffServ).  This approach uses feedback from the DiffServ 
provider to initiate packet signing at the source.  The signature allows the DiffServ provider to distinguish valid 
packets from malicious packets.  This mechanism can also be used to provide key management for other digital 
signature methods, such as the Internet Protocol Authentication Header (IP AH).  However, unlike other methods, 
our solution requires no encryption or cryptographic processing on a per-packet basis.  Instead, it utilizes the 
sender’s ability to alter its packet signatures faster than the attacker can duplicate the changes.  This method also 
avoids the fragmentation and decreased throughput associated with increased packet size of IP AH through use of 
existing fields in the IP header.  This method results in a significant reduction in valid packets that are dropped 
during a DoS attack.  Thus, a DiffServ provider would be able to maintain QoS guarantees during an attack 
without incurring the overhead associated with cryptographic signatures.  A C++ implementation of this DoS 
countermeasure for the ns2 network simulator and the experimental simulation scripts are included as appendices. 
 
 
 

15. NUMBER OF 
PAGES   

101 

14. SUBJECT TERMS    
Differentiated Service, DiffServ, Denial of Service, DOS, Quality of Service, QOS, 

Networks, NS2 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

A METHOD FOR MITIGATING DENIAL OF SERVICE ATTACKS ON 
DIFFERENTIATED SERVICES NETWORKS 

 
Matthew J. Braun 

Lieutenant, United States Navy 
B.S., University of Illinois at Urbana-Champaign, 2002 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2002 

 
 
 

Author:  Matthew Braun 
 
 
Approved by:  Geoffrey Xie 
   Thesis Advisor 
 
 
   Richard Scott Cotè 
   Second Reader 
 
 
   Christopher Eagle, Chairman 
   Department of Computer Science 

 



 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 
 
 
 
This thesis presents a method for countering Denial of Service (DoS) attacks in 

networks that provide Quality of Service (QoS) guarantees using Differentiated Service 

(DiffServ).  This approach uses feedback from the DiffServ provider to initiate packet 

signing at the source.  The signature allows the DiffServ provider to distinguish valid 

packets from malicious packets.  This mechanism can also be used to provide key 

management for other digital signature methods, such as the Internet Protocol 

Authentication Header (IP AH).  However, unlike other methods, our solution requires no 

encryption or cryp tographic processing on a per-packet basis.  Instead, it utilizes the 

sender’s ability to alter its packet signatures faster than the attacker can duplicate the 

changes.  This method also avoids the fragmentation and decreased throughput associated 

with increased packet size of IP AH through use of existing fields in the IP header.  This 

method results in a significant reduction in valid packets that are dropped during a DoS 

attack.  Thus, a DiffServ provider would be able to maintain QoS guarantees during an 

attack without incurring the overhead associated with cryptographic signatures.  A C++ 

implementation of this DoS countermeasure for the ns2 network simulator and the 

experimental simulation scripts are included as appendices. 



 vi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii

TABLE OF CONTENTS 
 
 
 

I. INTRODUCTION........................................................................................................1 
A.  BACKGROUND ..............................................................................................1 
B. PURPOSE.........................................................................................................1 
C.  SCOPE ..............................................................................................................2 
D. MAJOR CONTRIBUTIONS..........................................................................2 
E. RELATED WORK ..........................................................................................2 
F. ORGANIZATION ...........................................................................................2 

II. NETWORK QUALITY OF SERVICE .....................................................................5 
A.  OVERVIEW.....................................................................................................5 
B. BEST EFFORT SERVICE .............................................................................5 
C.  INTEGRATED SERVICE..............................................................................5 
D. DIFFERENTIATED SERVICE .....................................................................6 

1. Architecture ..........................................................................................6 
2. Possible DiffServ Topologies...............................................................7 

a. End-to-End Single Provider Path.............................................7 
b. End-to-End Multiple Provider Path.........................................7 
c. Partial Best-Effort Path............................................................8 

III. DENIAL OF SERVICE ATTACKS ..........................................................................9 
A.  OVERVIEW.....................................................................................................9 
B. TYPES OF INTERFERENCE .......................................................................9 

1. Network Interference...........................................................................9 
2. Traffic Interference............................................................................10 

a. Direct Interference ..................................................................10 
b. Indirect Interference ...............................................................10 

B. ENABLING TACTICS .................................................................................10 
1. IP Header Manipulation....................................................................10 
2. Compromised Hosts...........................................................................11 

E. ATTACK PATH ............................................................................................11 
F. ATTACK METHODS...................................................................................12 

1. TCP Flooding .....................................................................................12 
2. Chargen Attack ..................................................................................13 
3. ICMP Flooding (Smurf Attack)........................................................13 

G. PROPOSED DOS COUNTERMEASURES ...............................................13 
1. Filtering ...............................................................................................13 
2. IP Traceback ......................................................................................14 
3. Router Throttling ...............................................................................15 
4. Distributed Filtering ..........................................................................16 
5. Drawbacks ..........................................................................................16 

D. DOS ATTACKS IN A DIFFSERV ENVIRONMENT...............................16 
1. Attack Constraints .............................................................................17 



 viii 

2. Countermeasures ...............................................................................19 

IV.  DENIAL OF SERVICE COUNTERMEASURE....................................................21 
A.  ASSUMPTIONS.............................................................................................21 
B. IP AUTHENTICATION HEADER (AH) ...................................................21 
C.  GOALS............................................................................................................22 
D. CONCEPT ......................................................................................................22 
E. THEORETICAL PERFORMANCE ...........................................................25 
F. WEAKNESSES ..............................................................................................27 

1. Size of Signature Space......................................................................28 
2. Path Variations ...................................................................................28 
3. Traffic Re-ordering ............................................................................28 
4. Fairness...............................................................................................29 

G. ADDITIONAL BENEFITS: DETECTION OF SERVICE THEFT.........30 

V.  SIMULATION ...........................................................................................................33 
A.  NS2 NETWORK SIMULATOR ..................................................................33 

1. Interpreted Objects ............................................................................33 
2. Compiled Objects ...............................................................................35 
3. DiffServ Implementation...................................................................35 

B. DESIGN CONSIDERATIONS.....................................................................37 
C.  IMPLEMENTATION ...................................................................................37 

1. Simulator Extensions .........................................................................37 
a. Class dsFeedback................................................................37 
b. Class IcmpAgent..................................................................38 
c. Class SnifferAgent...........................................................39 
d. Class ControlAgent...........................................................39 
e. Class FloodAgent................................................................40 
g. OTcl Procedures......................................................................40 

2. Simulator Modifications ....................................................................40 
a. Class dsred............................................................................41 
c. Class dsPolicy.....................................................................41 
d. Class Agent............................................................................42 
e. Class Packet .........................................................................42 
f. OTcl Packet Configuration.....................................................42 
g. OTcl Default Parameters ........................................................42 
h. Compilation Environment ......................................................42 

VI. PERFORMANCE EVALUATION ..........................................................................43 
A.  EXPERIMENTAL DESIGN.........................................................................43 
B. EXPERIMENTAL RESULTS......................................................................45 
C.  ANALYSIS .....................................................................................................46 

VII. CONCLUSIONS ........................................................................................................49 
A.  SUMMARY....................................................................................................49 
B. FUTURE WORK...........................................................................................49 

1. Countermeasure Hardening .............................................................49 



 ix 

2. Realism Improvements ......................................................................49 
3. Evaluation of Fairness.......................................................................50 

APPENDIX A. SOURCE CODE FOR DOS COUNTERMEASURE 
EXTENSIONS TO THE NS2 SIMULATOR..........................................................51 

APPENDIX B. MODIFIED NS2 SOURCE CODE ..................................................67 

APPENDIX C.  SAMPLE OTCL SCRIPT.................................................................77 

REFERENCES.......................................................................................................................83 

INITIAL DISTRIBUTION LIST.........................................................................................85 
 
 
 
 
 
 
 
 
 
 
 



 x 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 xi 

LIST OF FIGURES 
 
 
 

Figure 2.1. Possible Network Traffic Paths. ........................................................................8 
Figure 3.1. Time sequence Diagram for DiffServ Countermeasure...................................24 
Figure 4.1. Periodic DoS Effectiveness..............................................................................29 
Figure 6.1. Experimental Network Topology.....................................................................43 
Figure 6.2. Predicted Out-of-Profile Rates vs. Measured Results......................................45 
Figure 6.3. Effect of Token Bucket Size on Out-of Profile Rate .......................................46 
 

 
 
 
 
 
 
 
 
 
 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

ACKNOWLEDGMENTS 
The author wishes to thank his wife Krista for her love and support during the 

research and preparation of this thesis. 

The author wishes to acknowledge Prof. Geoffrey Xie for his advice, support, and 

instruction, without which this thesis would not have been possible. 

This research was supported in part by DARPA under the Next Generation 
Internet Program (AO#417) and by the National Science Foundation under grant No. 
ANI-0114014. 

 

 



 xiv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



1 

I. INTRODUCTION. 

A. BACKGROUND 

Future military networks such as the Navy’s FORCENet concept will carry traffic 

between many dissimilar groups of users simultaneously.  Traffic may be operational or 

administrative, and of varying precedence.  Military networks must be able to determine 

which traffic should receive higher priority.  For example, traffic between forces in 

combat must be given priority over routine administrative traffic.  The current model of 

Internet routing provides only Best Effort service.  No guarantees are made with respect 

to how, when, or if traffic will reach its intended destination.  Traffic that requires 

Quality of Service (QoS) guarantees - priority over other traffic or specific bounds with 

respect to transmission quality - is at a disadvantage in a best effort environment.  

Differentiated Service (DiffServ) is a method of providing QoS guarantees to network 

traffic by aggregating similar traffic and giving priority to specific aggregates. 

A Denial of Service (DoS) occurs when users are prevented from utilizing a 

service provided by a system.  The most widespread method of creating a DoS is by 

artificial exhaustion of a resource, such as bandwidth, processor cycles, or memory.  A 

Distributed Denial of Service (DDoS) attack is one in which an attacker uses the 

combined power of many hosts to exhaust the resources of a server.  New types of DoS 

attacks will accompany implementation of the DiffServ model.  The separation of traffic 

into aggregates will make it easier for an attacker to target a specific subset of traffic 

flowing in the network.  DiffServ also offers new possibilities for the prevention of DoS 

attacks, since a DiffServ provider will have more information about its clients than is 

currently tracked using today’s implementation of the protocols found on the Internet. 

B. PURPOSE 

The primary goal of this thesis is to develop and test a mechanism for preventing 

DoS attacks in DiffServ networks.  Secondary goals necessary to accomplish this include 

determination of the topologies likely to be used in future DiffServ networks, 

examination of the specific vulnerabilities of these topologies to DoS attack, creation of 

an analytic model that can be used to calculate the effectiveness of a DoS 



2 

countermeasure, and implementation of the DoS countermeasure as an extension of an 

existing network simulator. 

C. SCOPE 

The scope of this thesis is limited to (a) a review of the Differentiated Services 

standard, (b) determination of the constraints DoS networks will impose on new DoS 

attacks, (c) development of a feedback-based DoS countermeasure for use by DiffServ 

clients and providers, and (d) implementation and testing of the countermeasure in the 

ns2 network simulator. 

D. MAJOR CONTRIBUTIONS 

This thesis explores the possible changes in the manner in which DoS attacks are 

conducted that will accompany widespread implementation of DiffServ in the next-

generation Internet.  A technique is presented for countering DoS attacks against 

DiffServ networks.  This technique can also be used in certain cases to detect illegitimate 

use of premium services without payment.  An implementation of the technique in a 

common open-source network simulator is provided.  The theoretical performance of this 

technique is derived mathematically and compared to the results obtained by simulation.  

The communication method used in this technique may be useful in other applications as 

well. 

E. RELATED WORK 

A summary of this research was submitted to the 10th International Conference on 

Telecommunications Systems, Modeling, and Analysis (ICTSM 10) as a paper entitled A 

Feedback Mechanism for Mitigating Denial of Service Attacks against Differentiated 

Services Clients [BRAUN02].  This thesis presents the material covered in that paper and 

expands upon it. 

F. ORGANIZATION 

The remainder of this thesis is organized as follows: 

• Chapter II is an overview of network QoS in general and DiffServ in particular. 

• Chapter III is an examination of attacks used in the existing Internet and the 

methods proposed to defeat them.  The effectiveness of these attacks and methods 



3 

in DiffServ networks is discussed.  Differences in DoS attacks and the scenarios 

in which they would be possible and effective against a DiffServ network are 

discussed. 

• Conceptual details of the DoS countermeasure developed by this thesis are given 

in Chapter IV.  This chapter also includes a derivation of the theoretical 

effectiveness of the countermeasure 

• Chapter V describes how the proposed DoS countermeasure was implemented.  It 

includes a description of the design and architecture of the ns2 network simulator.  

Specific modifications to the simulator are discussed in detail. 

• Chapter VI sets for the simulated topology, experimental design, and simulation 

results. 

• Chapter VI lists the conclusions and future work for the thesis. 



4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



5 

II. NETWORK QUALITY OF SERVICE 

A. OVERVIEW 

Providing Quality of Service guarantees is one of the next steps in the evolution 

of Internet routing.  Networks that provide QoS guarantees allocate resources (queue 

space, bandwidth, etc.) to traffic flows differently based on the source and type of each 

flow.  The performance of applications such as streaming audio and video, Voice over IP 

(VoIP), and video teleconferencing can be degraded by network congestion or losses.  

Implementation of QoS guarantees can eliminate degradation and ensure fairness for all 

flows.  Current and proposed types of service are discussed below. 

B. BEST EFFORT SERVICE 

The current model of Internet routing provides only best effort service – no 

guarantees are made with respect to jitter (inter-packet arriva l time), latency (delay 

between transmission and receipt), error rate, or loss rate (number of dropped packets).  

Best Effort service does not prioritize one type of traffic over another, even in cases 

where it could be done easily and at low cost.  All traffic is treated equally, which puts 

traffic that requires limitations on the aforementioned qualities at a disadvantage.  Time-

sensitive traffic can be delayed or lost due to congestion caused by applications that do 

not have any specific latency requirements. 

Best Effort service does have certain advantages.  It does not require routers to set 

up end-to-end connections or maintain state information on a per-flow basis.  Best Effort 

routers also do not need to allocate or manage multiple queues for multiple traffic flows. 

C. INTEGRATED SERVICE 

One proposed alternative to Best Effort service is to monitor each end-to-end 

connection, hereinafter referred to as a flow, and selectively determine the order and 

direction in which packets are transmitted based on the QoS guaranteed to each flow.  

This provides a much finer granularity of service, since it allows prioritization at the flow 

level.  However, this method is not feasible for use in the Internet because it is not 

scalable to large networks.  It requires end-to-end connection setup for each flow, which 

in turn requires every router along the path of the flow to maintain state information 



6 

about the flow.  In the network core, where the paths of many flows overlap and traffic 

volume is very large, routers do not have the queue space or processing resources that 

would be required to monitor every flow passing through them. 

D. DIFFERENTIATED SERVICE 

Differentiated Service is a method of providing QoS to traffic flows without 

having to the maintain flow state information at every router.  Traffic classification is 

distributed to the edges of the network where volume is lighter.  Edge routers police 

traffic entering a network based on the Service Level Agreement (SLA) between the 

source and the domain operator.  Traffic is classified and conditioned to conform to one 

of a fixed number of specific behavior aggregates, which are pre-defined throughout the 

DiffServ domain.  Per-hop behavior (PHB) is defined as “a description of the externally 

observable forwarding treatment applied at a differentiated services-compliant node to a 

behavior aggregate”[RFC2474].  The treatment that traffic assigned to an aggregate will 

receive at core routers is determined by the PHB associated with that aggregate.  This is 

known as core-stateless routing.  Core routers do not track the state of individual flows.  

They are only responsible for forwarding based on the classification assigned to each 

packet when it entered the network. 

1. Architecture  

DiffServ has not yet been implemented on a large scale in the Internet.  

Implementation will not happen all at once, but will occur in individual domains as 

service providers upgrade equipment and software in their networks.  A DiffServ domain 

is defined as 

“…a contiguous portion of the Internet over which a consistent set of 
differentiated services policies are administered in a coordinated 
fashion….”[RFC2474] 

The DiffServ code-point is defined as the first six bits of the eight-bit Type of 

Service (ToS) field in a packet’s IP header.  Each behavior aggregate is identified by a 

single DiffServ code-point.  When a packet reaches the ingress router of a DiffServ 

domain, the ingress router will mark it by changing the value of the DiffServ code-point 

to the code-point associated with the correct aggregate for that packet.  Packets from 



7 

unrecognized sources, i.e. those that do not have an SLA with the domain, are assigned a 

default code-point.  Core routers treat packets with the default code-point as Best Effort 

traffic, thus ensuring backwards compatibility for traffic arriving from non-DiffServ 

domains. 

It is important to note that all routers in the DiffServ domain that are linked to 

other domains must be configured as ingress routers.  This provides access control to the 

QoS guarantees provided by the DiffServ domain.  Within the core of the network, 

packets are forwarded according to the per-hop behavior associated with the DiffServ 

code-point [RFC2474].  Traffic entering a core router without first being marked by an 

ingress router would be forwarded based on the code-point it arrived in the DiffServ 

domain with.  This would allow service theft - a situation in which some traffic receives 

preferred treatment that it is not entitled to receive.  Service theft could be accomplished 

by setting the traffic’s code-point to one that receives premium treatment by the DiffServ 

core routers. 

2. Possible DiffServ Topologies 

The proximity of the client and receiver to the DiffServ network affects the path 

that DiffServ traffic will follow.  This path in turn affects the guarantees the provider can 

make to clients.  There are three types of connection paths possible, as shown in Figure 

2.1. 

a. End-to-End Single Provider Path 

In this topology, clients and receivers are directly linked to a single 

DiffServ domain.  Traffic receives QoS guarantees over its entire path.  These guarantees 

are offered and ensured by a single DiffServ provider.  In Figure 2.1, traffic from A to B 

would follow this type of path. 

b. End-to-End Multiple Provider Path 

In this topology, clients and receivers are connected to different DiffServ 

domains.  Traffic flows on a path through different domains, but still receives QoS 

guarantees over the entire path.  All individual domains along the path must agree to 

provide QoS guarantees to traffic arriving from upstream DiffServ domains.  In Figure 

2.1, traffic from B to D follows this type of path. 



8 

c. Partial Best-Effort Path 

In this topology, the traffic from client to receiver transits a non-DiffServ-

capable domain at some point.  QoS is provided only during the times when the traffic is 

in a DiffServ domain.  In Figure 2.1, traffic from C to D and from A to C follows this 

type of path. 

Figure 2.1.   Possible Network Traffic Paths. 
 

 

 

 B

A

 D

 

C 

DiffServ
Domain 

Non - DiffServ Domain

DiffServ
Domain 



9 

III. DENIAL OF SERVICE ATTACKS 

A. OVERVIEW 

The goal of Denial of Service attacks is to prevent users from utilizing a service 

that a system is providing.  DoS attacks may target individual flows and groups of flows 

or they may be indiscriminate.  They may require the compromise of network devices, 

i.e. hosts, servers, and routers.  These devices may not have to be along the path of a 

targeted flow in order for an attack to be effective.  General types of interference, tactics 

that support or enable attacks, methods of interfering with or denying services, and the 

feasibility of these methods are discussed below. 

B. TYPES OF INTERFERENCE 

Denial of Service can be accomplished by disabling network hardware or 

software, by directly manipulating user traffic, or through misuse or abuse of legitimate 

protocols that interferes with the flow of user traffic.  Network interference, traffic 

interference, or both can be used to create DoS attacks. 

1. Network Interference 

Network interference is the result of rendering network hardware or software 

inoperative.  This disruption stops the normal function of a part of the network.  

Exploitation of flaws in network software that cause it to stop operating properly or halt 

is an example of software interference.  Hardware interference can be accomplished by  

• cutting a network link  

• removing power from a network device 

• jamming frequencies used by wireless access points.   

Although network interference may have a disproportionate affect on certain 

traffic sources or destinations due to their proximity to the disruption, it is usually 

indiscriminate since it affects all traffic attempting to transit the damaged portion of the 

network.  An attacker would not need to compromise any network devices to create this 

kind of interference. 



10 

2. Traffic Interference 

Traffic interference consists of any improper delay, manipulation, or dropping of 

packets.  An attacker can interfere with traffic either directly or indirectly. 

a. Direct Interference 

In order to directly interfere with network traffic, the attacker must 

compromise a network device and alter the way the device performs.  This type of 

interference may be targeted or indiscriminate.  For example, if a router is compromised 

and instructed to drop every third packet received, the attack would be indiscriminate.  A 

targeted attack would consist of interfering with traffic originating from or destined to a 

specific host or hosts.  If the attack is targeted, the compromised device must be along the 

path of the target flow(s). 

b. Indirect Interference 

Unlike network or direct traffic interference, indirect traffic interference 

does not disrupt operation of network devices and protocols along the path of the target 

flows.  The attacker attempts to exhaust some resource, such as link bandwidth or router 

memory, by overwhelming it with apparently valid traffic.  Once the resource reaches 

100% utilization, any additional traffic attempting to use it must be dropped.  The 

percentage of valid traffic that will be dropped is inversely proportional to the ratio of the 

demand for the resource to its capacity.  For example, if the attacker can raise the demand 

for a link to 10 times its capacity, then only 1 in 10 packets arriving at the link will be 

transmitted.  This method is indirect because harm to valid traffic is the result of 

processing invalid traffic, not direct manipulation. 

C. ENABLING TACTICS  

This section discusses two tactics that do not constitute DoS attacks themselves, 

but which are widely used in the conduct of DoS attacks. 

1. IP Header Manipulation 

IP header manipulation is an enabling tool for the majority of indirect DoS 

attacks.  As the name suggests, it consists of altering fields in the IP headers of packets.  

Under normal conditions, a host will place its IP address in the IP header Source Address 



11 

field.  For most methods of attack, the IP Source Address field of outgoing packets is 

changed.  This is commonly known as address spoofing. 

Source address spoofing serves two purposes in DoS attacks.  First, it makes it 

impossible for a receiver to determine the true source of an attacker’s packets.  Second, 

any replies to the source of packets with spoofed IP addresses will be sent to the spoofed 

address in the header instead. 

2. Compromised Hosts 

Network or Internet servers must be able to handle connections from hundreds or 

thousands of clients simultaneously.  Therefore, the bandwidth of inbound links to 

servers must be several orders of magnitude larger than the outbound bandwidth of 

individual clients.  This makes it very unlikely that an attacker will be able to conduct a 

bandwidth consumption attack by using a single host.  Most indirect interference attacks 

require that production of malicious traffic be spread among hundreds of individual hosts; 

hence the term distributed DoS.  

An attacker can obtain a DDoS flood source by breaking into a host and installing 

a DDoS attack tool.  Once the tool has been installed, the host will respond to commands 

sent from an attack manager under the attacker’s control.  The attack manager, which is 

also a compromised host, maintains a list of the compromised flood sources.  To initiate 

and control an attack, the attacker sends commands to the manager, which in turn sends 

commands to the individual hosts.  These commands include the type of attack to be 

conducted, start and stop times, and the target of the attack.  Use of this three-tiered 

system makes it difficult or impossible to trace an attack back to the perpetrator. 

D. ATTACK PATH 

DoS attack traffic may flow directly from source to target, or it may be sent to an 

intermediate host.  The latter indirect path is a characteristic of reflected attacks (RDoS or 

RDDoS).  When sending packets to an intermediate host, the attacker spoofs the target’s 

IP address in source address field of the attack packets.  The third-party host becomes an 

unwitting participant in the attack by sending a reply to what it thinks is the source of the 

packets, but which is actually the attack target.  Using a reflector in this manner further 

obfuscates the true source of the attack. 



12 

E. ATTACK METHODS 

Methods of creating a denial of service vary based on the equipment and 

protocols being used by the service provider and the resources available to the attacker.  

Attack methods based on network interference or direct packet manipulation are both 

possible and highly effective.  However, these types of interference must generally be 

countered through implementation of physical security or access control mechanisms, 

which are beyond the scope of this thesis.  This section focuses on various known 

methods of indirectly attacking network traffic. 

1. TCP Flooding 

The TCP handshake consists of a series of request and acknowledgement 

messages used to set up a TCP connection between a client and server.  A client initiates 

a TCP connection request by sending a SYN segment to the server.  When the server 

receives a SYN segment, it attempts to create a new connection by allocating resources, 

replying with a SYN/ACK segment, and waiting for a reply from the SYN originator.  If 

no reply is received, the connection will eventually timeout and the resources allocated to 

the connection will be released. 

To exploit this protocol, the attacker floods the target with SYN segments with 

invalid and unreachable source addresses.  A host will normally send a RESET segment 

to the source of an unexpected TCP segment.  The RESET segment allows the original 

source to release resources reserved for the connection.  However, since the requesting 

address is unreachable, no RESET reply to the target’s SYN/ACK segments will ever be 

received.  If the attacker can send enough requests to use up all available resources before 

incomplete connections begin to timeout, the target will not be able to accept any further 

SYN segments, resulting in a DoS to legitimate clients.  Some variations of this attack 

use randomly spoofed source addresses to get past filters on the target system that are set 

up to stop packets originating from a single source.  This type of attack follows a direct 

path to the target. 

Various other malformed TCP segments can be flooded at a host to elicit RESET 

responses.  This can be used in an attempt to consume the available bandwidth between a 

target and its connection to the Internet, or as a reflected attack against another host. 



13 

The effect of TCP flooding is generally indirect interference, since the processing 

of invalid requests prevents service to valid requests.  However, it can cause network 

interference if exhausting the server’s resources causes it to stop functioning. 

2. Chargen Attack 

The UDP chargen service responds to a UDP echo request by sending a string of 

characters to the source of the request [RFC864].  An attacker can exploit this by 

spoofing the target’s IP address in a UDP echo request.  This request is sent to the 

chargen port on an intermediate system.  Receipt of the request will create a feedback 

loop between the intermediate and target systems, preventing either one from responding 

to legitimate requests.  This indirect-path attack results in indirect interference. 

3. ICMP Flooding (Smurf Attack)  

When a system receives an ICMP echo request, it will respond with an ICMP 

echo reply.  However, if the request is addressed to a network broadcast address, it will 

be forwarded to every host in that network, and each host will send an echo reply.  To 

take advantage of this, an attacker sends an ICMP echo request, with the target’s IP 

address forged as the source address, to a network broadcast address.  This intermediate 

victim will broadcast the echo request to all hosts in the network, and they will all send 

echo replies back to the (forged) source of the request.  Since one ICMP packet sent to 

the broadcast address will be multiplied into hundreds or thousands of packets sent to the 

target, flooding the intermediate broadcast address with echo requests can rapidly 

consume the bandwidth of the target’s upstream link. 

F. PROPOSED DOS COUNTERMEASURES 

1. Filtering 

There are two main types of filtering, ingress and egress, that can be effective 

against DoS attacks.  Ingress filtering refers to filters applied to traffic as it enters the 

Internet [RFC2827].  It is used to prevent IP address spoofing.  Only packets with 

routable source addresses that lie within the address range of a site are allowed to pass 

though the filter.  This type of filter does not completely prevent forged source addresses.  

An attacker can still use forged source addresses within the originating domain’s assigned 



14 

address range.  However, filters of this type make it easier to find the true source of 

packets with forged header information. 

Ingress filtering is one of the more effective means of preventing DoS attacks, 

since it stops the address spoofing most attack rely upon.  However, there are several 

limitations to this approach.  For ingress filters to be truly effective, they must be 

implemented by a large majority of Internet Service Providers (ISP’s).  This will be hard 

to achieve, since it requires service providers to implement controls that do not directly 

benefit them.  Additionally, ingress filtering does not affect packets with spoofed IP 

source addresses in the same range as those assigned to the network implementing the 

filter. 

Egress filtering is performed at the destination.  Filters are set up to drop 

malformed or unauthorized packets as they are received.  Egress filters are primarily used 

to prevent network interference attacks designed to exploit flaws in applications.  They 

are ineffective at preventing indirect DoS attacks, since these attacks generally use valid 

requests that cannot be blocked while maintaining service to legitimate users.  A victim 

could use an egress filter to block all traffic from the domains that spoofed packets 

originate from, but this would still cause a DoS to legitimate users in that network.  

Furthermore, dropping packets as they are received at the destination does not relieve 

congestion on the link between the target and its upstream router(s).   

2. IP Traceback 

IP Traceback is a method of determining the true source of a packet with a forged 

source address.  When it is implemented, Internet routers would randomly mark packets 

with their own IP address as the packet passes through them.  After receiving a sufficient 

number of marked packets, the victim would be able to determine the full or at least 

partial path taken by malicious packets.  Once the true source IP address was known, the 

victim could work directly with the ISP of the source to stop the attack.  The advantages 

of this defense are low processing overhead required for implementation, backwards 

compatibility with existing protocols (the marking can be placed in a field of the IP 

header), and the ability to determine the true source of malicious packets without active 



15 

cooperation from the administrator of every router through which the packets pass 

[LEE01, SAVAGE00]. 

There are several drawbacks to this countermeasure.  First, it does not provide a 

way to distinguish between valid traffic and malicious traffic, so valid traffic may be 

penalized.  Second, some minimum number of malicious packets from a source must be 

marked in order to trace the flow from that source.  A resourceful attacker could take 

advantage of this by limiting the number of packets sent from any individual 

compromised host.  Finally, IP Traceback does not provide any relief to the victim during 

an attack.  Until the victim can stop the flood of the malicious packets, the attack will be 

effective.  Stopping the flow requires cooperation from the ISP at each source of flooding 

traffic. 

3. Router Throttling 

Router throttling is a method of distributed flow control.  It is designed to reduce 

traffic destined for a specific host at a point several routers upstream of the aggregation 

point for receipt by the host [YAU01].  When a server is overloaded with traffic, it 

calculates a maximum permissible flow rate and sends this value to participating 

upstream routers.  The upstream routers limit traffic destined to the overloaded server 

based on the specified flow rate.  In some cases, upstream routers may pass the flow rate 

limits to other routers further upstream.  This countermeasure shifts the processing 

requirements for large amounts of traffic from the target server to routers with greater 

bandwidth and filtering capability.   

Router throttling relies on a large measure of cooperation from other systems.  It 

also requires the victim to have detailed information about the Internet architecture in 

order to know which routers to activate throttles on.  The number of upstream routers that 

must participate in the flow control can become very large, and each must incur the 

overhead of count ing how many packets they allow through to the receiver.  It also 

requires an authentication mechanism for the flow control messages.  Otherwise, an 

attacker could use the flow control messages to create a denial of service by setting up 

unauthorized throttles. 



16 

4. Distributed Filtering 

Distributed filtering is a means of filtering packets similar to ingress filtering.  A 

router agent that performs distributed filtering checks each packet to determine if its 

source address is valid based on the agent’s knowledge of the Internet topology.  For 

example, if a router receives a packet from host A on a link other than the one that traffic 

from A should arrive on, the packet will be dropped.  It has been shown that a number of 

these agents, installed on only 20% of the autonomous systems in the Internet, would be 

sufficient to prevent up to %96 of all DoS attacks, and allow the location of a source of a 

successful attack to be narrowed to a set of five domains [PARK01]. 

The problem with this type of defense is that it relies on detailed knowledge of the 

Internet topology.  Exchange of source routing information between routers imposes 

additional overhead and would require some type of authentication.  The required 

cooperation of 20% of the autonomous systems on the Internet is also negative.  

Additionally, this method does not filter traffic with spoofed IP addresses that are still 

within a valid range for a given domain.  If hosts A and B are both in the same domain, 

the countermeasure would be ineffective against packets sent from B but marked with 

A’s address.  Some type of ingress filtering would be required for attacks of this type.  

5. Drawbacks 

The main drawback shared by the above countermeasures is the need for 

cooperation from third-party routers or service providers.  Obtaining this cooperation 

may be difficult or impossible based on the provider’s unwillingness or inability to act, 

and linguistic and geographic barriers.  The inability to stop attacks in a timely manner, 

requirements for changes to network devices and protocols, processing overhead, and 

requirements for detailed knowledge of changing Internet topology make it unlikely that 

these solutions will be implemented in a widespread and effective manner.  

G. DOS ATTACKS IN A DIFFSERV ENVIRONMENT 

New types of DoS attacks will accompany implementation of the DiffServ model.  

The separation of traffic into distinct classes and policing traffic on a per client basis will 

make it easier for an attacker to target a specific subset of the traffic flowing between 

nodes.  Since resources for individual traffic classes will be limited, it may be easier to 



17 

exhaust resources available to those classes.  Furthermore, bandwidth limits imposed on 

sources in order to maintain QoS guarantees will impose an artificial bottleneck that 

attackers can exploit.  If the DiffServ network reduces the bandwidth available to best 

effort traffic in order to maintain service guarantees to other traffic, it may inadvertently 

facilitate a DoS attack against best effort traffic.  Service theft, the unauthorized use of 

guaranteed services, may also result in a denial of service to legitimate users of those 

services.  This section describes the effects that DiffServ implementation will have on the 

conduct of DoS attacks. 

If an attacker can compromise hosts or routers within the DiffServ domain, 

creation of a DoS network or direct interference for traffic flowing in the domain is 

trivial.  Similarly, an attacker could deny service to a client by compromising client 

systems.  Solutions to these types of attack are beyond the scope of this thesis.  This 

research focuses on a method of attack similar to the most common types of attacks 

employed in the current Internet. 

1. Attack Constraints  

Indirect interference through bandwidth consumption will be harder to 

accomplish if flood traffic must traverse a DiffServ domain, since packets from paying 

clients will receive preferential treatment.  Packets from unrecognized sources will be 

assigned a default code-point, and will not receive special treatment.  Valid packets will 

be less likely to be dropped and more likely to reach their destination in a timely manner 

because of the priority they receive over best-effort traffic.  Thus, implementation of 

DiffServ will inherently provide more DoS protection for traffic aggregation points.  

With servers less vulnerable, the overall effect will be a shift in the focus of DoS attacks 

away from traffic termination points and towards other points along the path. 

The point at which traffic enters a DoS domain is the next logical point of attack.  

If a DiffServ provider is to use finite resources to provide QoS guarantees to all clients, it 

must limit the amount of traffic individual clients may send.  The amount of traffic a 

client may receive premium service for is defined in the SLA with the DiffServ provider.  

Bandwidth limitations imposed by SLA enforcement will make the entry point of the 

DiffServ network the narrowest section of the path. 



18 

DiffServ domains only provide preferred service to recognized clients.  At the 

network layer, incoming packets are classified to receive preferential treatment if their 

source address matches the address associated with an existing SLA.  Consequently, DoS 

attacks will rely on spoofing the address of a valid DiffServ client to attack that client or 

the class of traffic associated with that client’s SLA.  This in turn requires that the 

attacker have some means of identifying the clients of a DiffServ provider.  Typically, 

this will be accomplished through installation of some type of traffic monitor or “sniffer” 

along the path from the client to the DiffServ domain. 

The DiffServ domain must be able to meter each client’s traffic in order to ensure 

client adherence to SLA’s with regard to usage amounts.  It is possible to distribute this 

metering across all ingress routers, or to process and store metering information in a 

central database.  However, it is assumed that this metering will not be distributed or 

managed in a centralized manner.  Instead, the DiffServ domain assigns a specific ingress 

router as the designated entry point for traffic from a given client.  This eliminates 

overhead associated with intra-domain metering communications.  It also allows the 

DiffServ domain to filter incoming traffic based on the router it arrives at.  Therefore, to 

conduct a successful attack, the attacker must not only spoof the address of a valid client, 

but it must ensure that flooding traffic arrives at the ingress router assigned to that client. 

In a wired network, if a client is only one hop away from the ingress router, the 

DiffServ domain will be able to filter traffic based not only on the incoming router, but 

also on the incoming link.  In this case, it will be impossible for an attacker to flood 

spoofed traffic using this client’s source address, since we have already stated that the 

client itself is not compromised.  It follows that no attack is possible unless the client is 

more than one hop away from its assigned ingress router.   

The above reasoning does not hold if the client’s connection to the ingress router 

is a wireless link.  In a wireless connection, the transmission medium itself is not secure.  

Even if a client is only one hop away from the ingress router, an attacker could inject 

malicious traffic with that client’s address, thus circumventing the interface filtering at 

the ingress router.  Use of wireless networks also simplifies covert collection of 

information about clients, since packets are broadcast into an unprotected medium. 



19 

2. Countermeasures 

DiffServ implementation will enable new methods for prevention of attacks 

without interfering with the effectiveness of existing countermeasures.  Current attacks 

rely on the inability of the target to determine the source of flooding, thereby preventing 

the flood from being stopped or effectively filtered upstream of the aggregation point.  

However, since QoS guarantees are only provided to paying clients, the DiffServ 

provider must maintain a database of clients in order to properly meter traffic and provide 

appropriate QoS.  The provider can use this data at ingress routers to quickly downgrade 

or drop packets marked with non-client source addresses.  Of course, an attacker could 

simply forge the source addresses of actual clients, so the router must have another means 

of filtering malicious traffic.  However, this requires the attacker to use addresses of hosts 

that the DiffServ provider knows are valid.  This is a key benefit, since having a valid 

source address to contact allows verification of the authenticity of the traffic being 

received. 



20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



21 

IV. DENIAL OF SERVICE COUNTERMEASURE 

A. ASSUMPTIONS 

The majority of the assumptions made when developing this countermeasure were 

based upon the discussion in Chapter III, Section D.  To summarize, client traffic must 

follow a partial best effort path.  The attacker can observe the traffic, and direct some 

number of agents installed on compromised hosts to mimic the signature of the client’s 

packets.  These hosts then send a flood of traffic to the ingress router assigned to that 

client. 

One other assumption was necessary to define the environment in which the 

countermeasure would operate.  The bandwidth of the connection between the DiffServ 

client and provider is assumed to be greater than the combined bandwidth available to the 

attacker for flooding.  If this were not the case, the attacker would not have to use a new 

type of attack, but could simply conduct a traditional indirect DoS against either the 

provider or the client. 

B. IP AUTHENTICATION HEADER (AH) 

The Authentication Header extension to the IP protocol is used to provide 

connectionless integrity and data origin authentication for IP datagrams [RFC2402].  The 

sender “signs” individual packets using a shared secret key, a hashing algorithm, and 

portions of the data contained in the packet.  The receiver uses the same key and 

algorithm to verify the signature of the received packet.  If the IP header is included when 

calculating the signature, the receiver can authenticate the source address field of the 

message. 

It is possible for a receiver to determine the validity of a packet’s source address 

for 100% of IP AH packets received.  However, the per-packet cryptographic processing 

required for IP AH does not scale well, and may be too computationally intensive to 

implement while maintaining QoS guarantees.  Ingress routers would be required to 

verify the header of every packet received before they could decide whether or not to 

discard it.  Studies have shown that the maximum data rates of several widely used secure 



22 

hashing algorithms are not sufficient for use in high-speed networks [RFC1810, 

RIPEMD96]. 

Another drawback of IP AH is that it requires the insertion of an additional header 

section into each packet.  For small packets, such as those used for VoIP traffic, this 

additional header information represents a significant percentage of the overall size of the 

data packets.1  The increased size would result in greater transmission delays, and could 

adversely affect the QoS a DiffServ provider could guarantee.  For applications that use 

larger packets, such as UDP-based streaming video or audio, increasing the size of IP 

packets can result in fragmentation, which also negatively affects QoS. 

C. GOALS 

The goal of this research was to develop a DoS countermeasure that would be 

effective under the assumptions above.  To be acceptable, the countermeasure  

• must not require per-packet cryptographic processing, 

• must not rely on cooperation from third-party hosts or routers, 

• must not increase the likelihood of packet fragmentation, and 

• must have negligible or no effect on the provider’s ability to guarantee QoS. 

The goal was not to devise a solution that would guarantee authentication of 

100% of incoming packets or a zero loss rate for valid, in-profile traffic.  Some degree of 

loss was deemed acceptable in exchange for reduced processing overhead. 

D. CONCEPT 

The DoS countermeasure that was developed is a marking method that a client 

can use to make its packets readily distinguishable from traffic with forged headers in 

certain cases.  Supporting this design is a feedback mechanism through which a provider 

can notify a client when its traffic does not conform to the profile specified in its SLA. 

This thesis proposes a technique that will allow the ingress router of the DiffServ 

domain to distinguish valid packets from malicious ones based on signature.  A packet’s 

signature is defined as a combination of the source address field and one or more other 
                                                 

1 The minimum size of the AH header is 16 bytes; maximum size depends on the size of the encrypted 
packet and the AH options selected.  The size of a common VoIP packet (without AH) is 64 bytes. 



23 

fields in the IP header.  This method relies on the ability of the client to alter this 

signature.  Since it has been assumed that an attacker will be able to observe traffic 

flowing between the client and the DiffServ domain, and will be able to instruct the flood 

sources to mimic any changes to packet signatures that it observes, changing the headers 

once is insufficient.  Therefore, changes will be made on a periodic basis, and must be 

made faster than the attacker can duplicate them. 

Figure 3.1 is a time diagram showing the sequence of actions involved in the 

proposed countermeasure.  When the ingress router marks a packet that appears to 

originate from a DiffServ client as out-of profile, it will log the source and time (t1) of the 

drop.  When the rate of out-of-profile marking exceeds a pre-set threshold (t2), the router 

will send a feedback message (A) to the client.  Upon receipt (t3), the client will begin 

altering the signature of its packets.  The ingress router will use these alterations to 

identify valid packets.  It will drop all packets with an invalid signature.  Details of the 

individual actions taken by the client and DiffServ router are given below 

The router feedback to the client will consist of a router-generated seed key for an 

algorithm that generates a sequence of signatures.  The client and router will be able to 

independently calculate what the correct signature should be using this algorithm and the 

seed-key.  The algorithm can be well known as long as the seed key being used remains 

secret.  The seed key will be encrypted using a shared secret key and digitally signed.  A 

seed key is used to generate new signatures instead of the shared secret key to avoid 

compromising the secret key through overuse.  The digital signature provides 

authentication for the feedback message, so attackers will be unable to create a DoS by 

forging these messages.  Payload encryption is required since the attacker can monitor 

traffic flowing between the client and the DiffServ domain.  Since the algorithm for 

generating signature values is not secret, access to unencrypted seed keys would allow 

the attacker to change the signature of the attack packets as rapidly as the sender could, 

thus circumventing the countermeasure. 



24 

Figure 3.1.   Time sequence Diagram for DiffServ Countermeasure 

 

Upon receipt of a feedback message, the client will authenticate it, decrypt the 

payload, and use the seed key to calculate the sequence of signature values that it will 

use.  The client will immediately begin using the values in the designated fields of the IP 

headers of its packets.  It will switch to the next signature (Si) in the sequence at regular 

intervals denoted by W.  The attacker will not know what each new signature is until it 

receives the information from the monitor installed along the path of the client traffic (B).  

When it knows the new signature, it can direct the flood sources to change the signatures 

they are using (C).  The time between when the ingress router receives the first valid 

packet with a new signature and when it receives the first attack packet with the same 

 

time

Client 
Gateway 

Ingress 
Router 

S0 

A 

Flooding 
Sources 

S0 

S1 

S2 

t1 

S1 

S3 

W 

W 
W - d

Attack 
Controller 

C 

Attack 
initiated 

S2 

S3 Traffic 
Sniffer 

t2 

t3 B 

d 



25 

signature, denoted by d, is the window in which 100% authentication is possible.  The 

importance of the relative values of d and W are discussed in Section D. 

The seed key is also used to create the same sequence of signature values at the 

router.  After sending a feedback message, the router will treat all packets as valid until it 

receives the first packet with the first altered signature.  All successive packets with an 

incorrect signature are dropped, except the first packet received with the second 

signature.  When the first packet with the second signature is received, the router will 

drop all successive packets that do not match the second signature, including those 

marked with the first signature.  This prevents an attacker from using old signatures to 

circumvent the DoS countermeasures. 

E. THEORETICAL PERFORMANCE 

The main performance metric of interest is the client’s packet out-of-profile rate, 

i.e., the percentage of the DiffServ client’s packets being marked out of profile at the 

ingress router.  A DoS countermeasure is considered more effective than another is if it 

achieves a smaller packet out-of-profile rate for the client given the same network setup 

and attack scenario.  An analytical model of the feedback mechanism was created using a 

set of simplifying assumptions.  From this model a closed form solution for the DiffServ 

client’s packet out-of-profile rate was derived. 

Denote the percentage of the client’s packets being marked out of profile at the 

ingress router by p.  In order to derive p, the following additional assumptions were 

made: 

1) All client and attack packets are the same size.  

2) The client’s traffic arrives at the ingress router at a constant rate of r packets 

per second, which is less than or equal to CIR, the client’s committed 

information rate in packets per second. 

3) The attack traffic arrives at the ingress router at a constant rate of A packets 

per second such that  

CIRAr ≥+ .    (1) 



26 

This means the percentage of valid traffic received by the ingress router is 

equal to 

Ar
r
+

.      (2) 

4) The client traffic switches to a new signature every W seconds.  The attack 

traffic tries to make the same signature change, but the change always 

happens  d seconds later from the ingress router’s perspective.  In other words, 

there is a fixed lag of d between the arrival time at the ingress of the first valid 

packet with a new signature and the arrival time of the first attack packet with 

the same signature. 

5) The ingress router’s traffic metering process for the client is fair so that if the 

traffic being metered is made of several flows, each flow will be ensured of a 

share of in-profile packets that is proportion to the flow’s packet arrival rate. 

Consider the time window for an arbitrary signature used by the client’s traffic.  

There are two cases:  

Case 1: .dW ≤   From assumption 4, during the entire time period, every attack packet 

carries an expired signature when inspected by the ingress router.  Such packets will be 

dropped before being counted against the client’s committed rate in the metering process.  

From assumption 2, the rate of the valid traffic alone does not exceed the committed rate.  

Thus, we have .0=p  

Case 2: .dW >  From assumption 4, during an initial time period equal to d, the ingress 

router will be able to drop all attack packets.  However, for the remaining time dW − , 

the ingress router will not be able to distinguish valid traffic from attack traffic because 

they have the same signature.  In that case, some of the client’s packets will be marked 

out-of-profile.  From assumption 5 and equation (2), the percentage of client packets 

marked as in-profile during this period is 

Ar
r

IRCdW
+

⋅− ])[( ,     (3) 

so the number of client’s packets marked out of profile during this period is:  



27 

Ar
r

IRCdWdWr
+

⋅−−−⋅ ])[()(     (4) 

)1()(
Ar

CIR
rdW

+
−×⋅−= .    (5) 

Dividing equation (5) by the total number of packets sent by the client during the entire 

time window, Wr ⋅ , yields 

)1()(
Ar

CIR
W

dW
p

+
−×

−
= .    (6) 

It can be shown via a similar derivation that 0p , the packet out-of-profile rate for 

a client that does not use any DoS countermeasure, is equal to 

)1(0 Ar
CIR

p
+

−=  .     (7) 

Using equation (7), we rewrite equation (5) as: 

0)1( p
W
d

p ×−= .     (8) 

Equation (8) clearly indicates that the reduction in the packet out-of-profile rate due to 

the feedback mechanism is inversely proportional to W, the period between signature 

changes by the client. 

Combining both cases results in the following theorem: 

Theorem 1.  After a client initiates the DoS, the client’s packet out-of-profile rate 

becomes 

)}1()1(,0max{
Ar

CIR
W
d

p
+

−×−=  .    (9) 

F. WEAKNESSES 

A rudimentary implementation of this countermeasure would nave several weak 

points.  This section discusses several known weaknesses of the DoS countermeasure and 

possible solutions. 



28 

1. Size of Signature Space 

One weakness is based on the size of the signature space, which is defined as the 

combined total number of bits in the IP header fields used as the signature.  If the 

signature space is small, an attacker can launch an attack such that packets containing 

every possible signature are sent to the DiffServ ingress router during any given signature 

window W.  As a result, the ingress router will receive attack packets with signatures 

matching the next expected signature before the client has switched to that signature.  

Processing these packets will trigger a premature signature change.  The resulting 

signature asynchrony between the client traffic and the ingress router will cause all future 

client packets to be dropped by the DoS countermeasure.  This is a more effective DoS 

than if the countermeasure was not in use. 

Even if the signature space is sufficiently large, an attacker may be able to send 

enough packets with different signatures to increase the statistical likelihood that one of 

them will have the correct next signature.  To counter this, the client can also use the 

feedback mechanism  

2. Path Variations  

The client’s ability to change its signature faster than an attacker can duplicate the 

changes is not guaranteed.  It may be possible for attack traffic with the next signature to 

arrive at the ingress router faster than valid traffic with the same signature.  As stated 

above, d depends on the difference in the ingress router arrival times of valid and invalid 

packets with the same signature.  If the difference is equal to zero, then from the ingress 

router’s point of view, the attacker can match the signature changes as fast as or faster 

than the client can make them and the countermeasure is useless.  If the difference is 

negative (i.e. attack packets arrive faster than valid packets), the countermeasure actually 

aids the attacker, since valid packets with the previous signature will be dropped after 

receipt of the first attack packet with the new signature. 

3. Traffic Re-ordering 

If valid traffic is re-ordered at some point before reaching the ingress router, the 

countermeasure may have an adverse effect on valid traffic.  A packet containing a new 

signature that is received out of order, i.e. ahead of packets with the old signature, will 



29 

cause in-transit packets with the old signature to be dropped.  This can be remedied by 

delaying the expiration of old code-points.  The length of the delay can be based on the 

mean propagation delay incurred by client traffic as observed by the ingress router.  

However, this remedy reduces the effective period of the countermeasure, since flooding 

traffic with the old signature will also be accepted during the overlap period. 

4. Fairness 

The countermeasure may disproportionately drop packets from certain sub-flows 

within the clients traffic.  Recall the steps for deriving the client’s out-of-profile rate.  If 

W is a constant and if W is larger than d, the DoS countermeasure creates periodic DoS 

effective time intervals as illustrated in Figure 4.1.  During these time intervals, the 

countermeasure is ineffective and the DoS attack causes high packet out-of-profile rates 

for the client.  If one of the client’s sub-flows generates packets periodically, it is possible 

that the flow started during a DoS effective interval and its packet generation period is 

similar to W.  In such a case, that sub-flow’s packets always arrive at the ingress during 

DoS effective periods, resulting a disproportionately high out-of-profile rate for the sub-

flow.  

 

Figure 4.1.   Periodic DoS Effectiveness 

 

Therefore, the DoS countermeasure may not all sub-flows equally or fairly.  One 

fix is to have the client randomize the value of W.  We intend to evaluate the performance 

W 

d 

time 

… … 

DoS effective 



30 

of this fix and other solutions to enhance the fairness of the countermeasure in our 

follow-on work 

 

G. ADDITIONAL BENEFITS: DETECTION OF SERVICE THEFT 

A service theft can be defined as a course of actions taken by a perpetrator to use 

a portion of a valid client’s allocated bandwidth and obtain a premium service without 

pay.  An intruder may attempt to blend its unauthorized traffic in with valid traffic by 

studying the client’s traffic pattern and adjusting his own traffic volume over time so that 

the ingress router would never mark an excessive number of packets out of profile.  

Unlike a DoS attack, the perpetrator is typically much more restrained to avoid drawing 

attention to himself.  Therefore, a service theft usually does not cause as much direct 

harm to the client as a DoS attack.  However, service theft results in lost revenue and 

network availability for the DiffServ provider. 

The proposed feedback mechanism and the resulting cooperation between the 

client and the ingress router may help the service provider detect service theft.  For 

example, the ingress router may activate the feedback mechanism randomly, regardless 

of whether or not it has just marked a large number of packets out of profile for the client.  

If a service theft is under way, the ingress router should notice two or more signatures 

being frequently used at the same time.  When this occurs, the ingress router may log the 

event as a possible occurrence of service theft or immediately alert the network operator 

to perform further investigation.  Use of a random signature time window (W) would 

prevent the perpetrator from predicting how much longer a spoofed signature would be 

valid and adjusting its traffic pattern accordingly.   

If the intruder can monitor feedback messages from the ingress router, he can 

evade the ingress router’s service theft detection by suspending his flooding traffic 

whenever a feedback message is observed.  In this case, the proposed theft detection 

mechanism may not be able to catch a more resourceful intruder.  However, it will be 

sufficient to stop the service theft from continuing, and more importantly, it will deter 

future service theft by forcing the intruder to expend more resources and effort to avoid 

detection.  



31 

The general conclusion that can be drawn from the above discussion is that the 

proposed DoS countermeasure may be extended into an auditing function that is 

orthogonal to access control.  For example, it may be used to supplement some other DoS 

countermeasure by detecting service theft or cases where the authentication process of the 

other countermeasure has been compromised. 



32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



33 

V. SIMULATION 

A. NS2 NETWORK SIMULATOR 

The experiments were conducted using version 2.1b8a of ns2, a discrete event 

simulator targeted at networking research [NS02].  The following description of the 

simulator is given in The ns Manual: 

ns is an object-oriented simulator, written in C++, with an OTcl interpreter 
as a front end.  The simulator supports a class hierarchy (also called the 
compiled hierarchy …), and a similar class hierarchy within the OTcl 
interpreter (also called the interpreted hierarchy …).  The two hierarchies 
are closely related to each other; from the user’s perspective, there is a 
one-to-one correspondence between a class in the interpreted hierarchy 
and one in the compiled hierarchy. … Users created new simulator objects 
through the interpreter; these objects are instantiated within the interpreter, 
and are closely mirrored by a corresponding object in the compiled 
hierarchy. [FALL02] 

The simulator includes a DiffServ module with implementations of distinct core and edge 

routers, several marking policies and queuing disciplines, and built- in tracing for 

DiffServ queues. 

The remaining material covered in this section is drawn from the detailed 

description of ns2 in [FALL02].  In the remainder of this thesis, names of objects and 

functions in the compiled (C++) hierarchy are in Courier bold.  Names of objects 

and functions in the interpreted (OTcl) hierarchy are in italics.  By convention in ns, 

subclasses are denoted by specifying the name of the parent class followed by a forward 

slash and the name of the subclass.  For example, Agent/UDP is a subclass of Agent, and 

Agent/UDP/Sniffer is a subclass of Agent/UDP. 

1. Interpreted Objects 

The simulator is configured using OTcl scripts to define the parameters of 

network devices and interrelationships between them.  Objects in the script are 

instantiated in the compiled and interpreted hierarchies when the simulator is initialized 

at run time.  This subsection describes the OTcl objects necessary to construct and run an 

ns2 simulation. 



34 

Most scripts begin by instantiating a Simulator object, which represents an 

instance of the ns2 simulator.  This object provides interfaces for simulator configuration 

and for setting up the type of event scheduler to be used.  To instantiate simulator objects 

and configure other aspects of the simulation, various methods of the class Simulator are 

called. 

Node objects represent network hosts and routers.  A Node’s address may be 

assigned automatically or manually.  Unicast nodes contain two Classifier objects, which 

determine how packets are forwarded.  The address classifier determines whether a 

packet is addressed to the node.  If it is not, the packet is passed to the appropriate Link 

object, as determined by the routing algorithm, for forwarding.  If the packet is addressed 

to the node, it is passed to the node’s port classifier.  The port classifier passes the packet 

to the Agent object attached to the port specified in the packet’s header. 

A Link object connects two nodes and contains the mechanisms for simulating 

packet queues and propagation delays.  Links may be unidirectional (simplex-link) or bi-

directional (duplex-link).  Every link has a Queue object associated with each traffic flow 

direction.  A queue is the location where packets are stored until they can be forwarded to 

the link’s destination node.  The simulator provides a number of disciplines for queue 

management and scheduling. 

Agent objects are used to implement network protocols or services.  Agents are 

attached to nodes on a specific port, and they receive all traffic destined for that port.  

Similarly, they are the source of packets originating from that port.  Agents may manage 

packets based on native code, or they may have an attached Application object that 

determines how outgoing packets are generated and incoming packets are processed. 

Two agents can be linked using the connect command.  This designates each 

agent as the destination for traffic from the other agent.  When one of the linked agents 

creates a packet, the destination address is automatically set to the address of the other 

agent.  The Agent subclass Null implements a sink for traffic that requires no processing 

at the destination.   



35 

The Simulator, Node, Queue, Agent, and Application classes are mirrored in the 

C++ hierarchy by classes of the same name.  The Link class exists only in the OTcl 

hierarchy. 

2. Compiled Objects 

The exchange of references to Packet objects between simulator objects is used to 

simulate packet flow in the simulator.  The user can specifically choose which protocol-

specific headers are included in simulation packets, e.g. TCP, UDP, TELNET, and ARP.  

By default, every Packet object includes the structures for every protocol-specific header 

defined in ns2.  New header structures can be added by defining a C++ structure with the 

required fields, creating an OTcl linkage for the structure, and modifying the simulator 

initialization code to include the new header.  Class Packet is not mirrored in the OTcl 

hierarchy, since individual packets are not accessed in the interpreter. 

The struct ns_addr_t is defined in the file config.h, which resides in the ns-

2.1b8a subdirectory of the main ns2 directory.  This struct is a container for an address 

and port number pair.  It is used to correctly route traffic to or identify traffic from the 

Agent residing at the given port on the Node with the given address. 

The abstract base class TimerHandler provides the C++ means of scheduling 

future events.  This class is also not mirrored in the OTcl hierarchy.  Classes derived from 

TimerHandler must define the pure virtual function expire().  This function 

definition is the action that will be taken when the event is executed.  Based on the input 

parameter they receive, the sched() and resched() functions will schedule an event 

a certain number of seconds into the future.  At the scheduled time for the event, the 

simulation calls the expire() function, which executes the event.  The user can 

schedule a recurring event by calling the resched() function inside the expire() 

function. 

3. DiffServ Implementation 

The DiffServ module in ns2 allows the user to define a number of different 

behavior aggregates and their associated PHBs.  Packets arriving at an ingress point are 

marked with the code-point associated with their behavior aggregate.  DiffServ routers 



36 

provide varying QoS by applying different forwarding treatment to each aggregate.  

DiffServ objects also automatically maintain records of dropped packets. 

DiffServ routers in ns2 use Multiple Random Early Detection (MRED) for 

queuing management.  RED is designed to prevent overflow by randomly dropping 

packets when a queue’s usage exceeds a certain percentage of its maximum capacity.  

MRED applies a RED algorithm to a group of queues, but the drop probability for traffic 

assigned to an individual queue may be affected by the average length of all queues in the 

group. 

The class dsREDQueue is derived from class Queue.  It provides a single 

DiffServ router the functionality to handle multiple RED queues on a single link.  Two 

classes representing DiffServ edge (ingress) and core routers, edgeQueue and 

coreQueue, are derived from dsREDQueue.  They are mirrored in the interpreted 

hierarchy as Queue/dsRED/edge and Queue/dsRED/core, respectively. 

The class Policy provides the functionality to police traffic into different 

aggregates.  It also maintains a policy table with the parameters for each source and 

destination pair.  The mark() function assigns an initial code-point to the arriving 

packets of a flow based on their source and destination addresses, and then calls the 

policer via the applyPolicy() function.  The policy modules currently implemented 

in the DiffServ module are Time Sliding Window with Two or Three Color Marking, 

Single or Two Rate Three Color Marking, and Token Bucket.  The experiments 

conducted for this research used the Token Bucket policer, which is covered in detail 

below.  The policer may downgrade the initial code-point to a secondary or tertiary code-

point based on the state information maintained in the policy table for the flow.  

The Token Bucket policer increments the policy’s cBucket state variable 

according to the elapsed time since the arrival of the last packet.  The variable cBucket 

is incremented at a rate equal to the policy’s CIR, but is capped at an upper bound equal 

to the policy’s committed burst size (CBS).  If the arriving packet’s size is less than or 

equal to cBucket, cBucket is decremented by the packet size and the packet retains 

its initial code-point.  Otherwise, the packet’s code-point is downgraded to the secondary 

code-point. 



37 

B. DESIGN CONSIDERATIONS 

The DoS countermeasure was designed to require a minimum number of changes 

to existing ns2 files.  When possible, existing C++ classes were extended to add new 

functionality.  In all cases where this was not feasible, backwards compatibility was 

maintained with the version of ns2 being modified.  This was accomplished by adding 

new functions that are called only by code associated with the countermeasure, or by use 

of conditional statements that are executed only if the DiffServ module is installed.  

Existing lines of code were not modified. 

Since OTcl procedures do not need to be defined in the same file as their parent 

classes, new OTcl procedures were added in a separate file, and the compiler was 

reconfigured to include this file during building of the ns2 executable. 

C. IMPLEMENTATION 

Simulation of the DoS attack and countermeasure was implemented through 

modification of existing ns2 classes or by creation of new classes.  This section describes 

the changes and additions to the simulator.  The code for these changes can be found in 

Appendices A and B.  

1. Simulator Extensions  

The following classes were added to the ns2 Simulator.  They provide the 

methods and objects necessary to store information about the feedback process, to 

communicate between the DiffServ client and provider, and to create a simulated network 

topology based on the constraints described in Chapters III and IV. 

a. Class dsFeedback 

The DoS countermeasure is primarily implemented in class 

dsFeedback.  All members of this class are static, which allows other classes to access 

them without instantiating the parent class, and insures that only one state information 

database exists.  Member functions of this class enable database access and modification; 

generate code-points used by the countermeasure; and initiate of feedback messages. 

Class dsFeedback maintains a state information database for each 

source and destination pair seen by the ingress router.  The upper level of the database is 



38 

a C++ Standard Template Library (STL) map.  This map pairs each source address with a 

second map object.  The second map pairs destination addresses with objects of class 

FeedbackInfo.  Each FeedbackInfo object contains the state information for the 

specified source and destination pair.  The state information includes 

• an STL deque of packet drop times, 

• a flag indicating whether the countermeasure is running or not, 

• the current and next code-points to be used by the source, 

• the length of the key window, and 

• the parameters which determine the drop rate which, if exceeded, will 

result in a feedback message  

Class IcmpAgent is declared as a friend of class dsFeedback.  This 

allows it to access the private member variable secretKey.  This variable represents 

the shared secret required for authentication and decryption of feedback messages, and 

code-point sequence generation. 

The source code for classes dsFeeback and FeedbackInfo is in the 

files dsFeedback.{h,cc}, which are in the /ns-2.1b8a/diffserv directory.  These classes are 

not mirrored in the OTcl hierarchy. 

b. Class IcmpAgent 

The IcmpAgent class is derived from class Agent.  It provides the 

mechanisms for sending feedback messages and scheduling client code-point  changes.  

The struct hdr_icmp defines the ns2 header associated with ICMP agents.  It contains 

information about the source of a dropped packet, the seed key to be used to generate the 

code-point sequence, and the code-point window to be used by the client. 

The member function send() overrides the version in the parent class.  

The ingress router calls this function when the drop rate exceeds the threshold.  The 

function creates a new packet, assigns the appropriate value to the fields in the ICMP 

header, and sends this feedback packet to an ICMP agent attached to the source of the 

dropped packets. 



39 

The member function recv() also overrides the implementation in the 

parent class.  It is called when the parent node of the ICMP agent receives a feedback 

packet.  The function uses information in the packet’s header to configure and start the 

DoS countermeasure. 

Each ICMP agent contains an instance of class CodePtTimer, a timer 

derived from TimerHandler.  The expire() function of CodePtTimer calls the 

static generateNextCodePt() function of class dsFeeback and then reschedules 

itself based on the code-point window specified in the feedback packet from the ingress 

router. 

The source code for classes IcmpAgent and CodePtTimer, and the 

hdr_icmp struct may be found in the /ns-2.1b8a/diffserv directory in files icmp.{h,cc}.  

IcmpAgent is mirrored in the OTcl hierarchy as class Agent/Icmp. 

c. Class SnifferAgent 

The class SnifferAgent is used to simulate a monitor installed along 

the path of traffic coming from the client gateway.  This class is derived from the existing 

UDPAgent class, and is mirrored in the OTcl hierarchy as class Agent/UDP/Sniffer.  The 

member variable controller is a reference to a ControlAgent object attached to 

a separate node in the network.  This other node is the location of the attack controller.  

Whenever the source being sniffed sends a packet with a changed code-point, an 

additional packet is sent to the agent that controller refers to.  This simulates the 

ability of the attack controller to monitor traffic from the source and ‘see’ code-point 

changes.  The source code for SnifferAgent is contained in /ns-

2.1b8a/diffserv/sniffer.{h,cc}. 

d. Class ControlAgent 

This class is also derived from UDPAgent, and is mirrored as 

Agent/UDP/Controller.  It simulates the DoS attack controller.  The member variable 

floodList is a reference to a list of flooding sources.  The overridden function 

recv() examines the code-point in packets sent from a SnifferAgent and changes 

the code-point used by attack traffic to match it.   



40 

Due to problems encountered with spoofing addresses in the simulator, 

changes to the code-point used by the compromised hosts could not be made by sending a 

packet containing the new code-point from the controller to the flood source.  Instead, the 

code-point used by the flood sources was directly manipulated by the attack controller.  

This introduced an artificial acceleration of the attackers ability to mimic the clients 

code-point changes, since queuing, transmission, and propagation delays between the 

controller and flooder were eliminated.  However, the validity of the simulation was 

maintained by increasing these delays between the flooding sources and the DiffServ 

ingress router in the simulation script.  The source code for ControlAgent is 

contained in /ns-2.1b8a/diffserv/attack-controller.{h,cc}. 

e. Class FloodAgent 

This class simulates the flooding sources controlled by an attacker.  It is 

derived from UDPAgent.  The ability to alter the code-point in use upon receipt of a 

packet from the attack controller was implemented, but was not used for reasons 

discussed in the section on ControlAgent.  The source code for FloodAgent is 

contained in /ns-2.1b8a/diffserv/zombie.{h,cc}.2 

f. OTcl Procedures 

Addition of three OTcl procedures was necessary to allow the exchange of 

certain data between the compiled and interpreted hierarchies.  These procedures are 

located in the file /ns-2.1b8a/tcl/lib/ns-diffserv.tcl.  The procedures prio and set_priority 

were added to class Agent to allow the user to view and modify an agent’s code-point for 

debugging purposes.  The procedure get-agent-handle was added to the ICMP agent class 

(Agent/ICMP).  It takes a port number as an argument and returns a reference to the agent 

attached to that port.  The procedure allows an ICMP agent in the C++ hierarchy to 

obtain a reference to another agent attached to the same node. 

2. Simulator Modifications  

The following existing ns2 files were modified to implement functions necessary 

for either creating the attack scenario described in Chapter III or implementing the DoS 

                                                 
2 For consistency with the thesis text, simulator files zombie.{h,cc} are renamed flood.{h,cc} in the 

appendices, and the word “zombie” has been globally replaced with the word “flood” 



41 

countermeasure described in Chapter IV.  Modifications to existing files can be found 

quickly by searching for the flag “[FEEDBACK]”. 

a. Class dsred 

The class dsred simulates queue objects in DiffServ enabled routers.  

This class is mirrored in the OTcl hierarchy as class Queue/dsRED.  It contains a struct 

stats, which stores data about the number of packets dropped.  The enque() function  

of this class takes a Packet object as an argument and queues or drops it based on the 

algorithm chosen by the user during configuration of the simulator.3 

The member variable drops_FB was added to the stats struct to allow 

tracking of the number of packets dropped by the DoS countermeasure.  The enque() 

function was modified in two ways.  First, prior to performing any metering, incoming 

packets are checked to see if they are marked with an invalid code-point.  If the code-

point is invalid, drops_FB is incremented, and the packet is dropped without further 

processing.  Otherwise, the packet is processed by the pre-existing code.  The second 

change was inserted just prior to the points at which packets are dropped during normal 

processing.  The simulator checks to see if the countermeasure is active at the source of a 

packet about to be dropped.  This is done to ensure that no excess overhead is incurred by 

sending feedback messages to a source that is already running the countermeasure.  If the 

countermeasure is not active, the record of drops for that packet’s flow is updated in 

dsFeedback::feedbackTable. 

b. Class dsPolicy 

The class dsPolicy performs the metering functions of the DiffServ 

ingress routers.  It is not mirrored in the OTcl hierarchy.  The mark() member function 

of this class uses the meter and parameters specified by the user to set the code-points of 

packets arriving at the router.  The mark() function was modified to call the 

dsFeedback::isCodePtValid() function prior to executing the existing code.  

Packets with invalid code-points are reassigned the code-point 

                                                 
3 Choices for the queuing algorithm are drop tail, RIO C, RIO D, or WRED.  A description of each can 

be found in the ns2 users manual [FALL02]. 



42 

dsFeedback::INVALID_CP, and this code-point is also returned to the calling 

function.  Packets with valid code-points are handled by the pre-existing code. 

c. Class Agent 

The class Agent is the base class for all simulator agents.  It is mirrored 

in the OTcl hierarchy as class Agent.  The Agent protected member variable prio_ 

represents the IP ToS field.  The public member function set_priority() was added 

to allow modification of prio_ outside of the Agent class. 

d. Class Packet 

The class Packet stores a list of the headers included in a packet object 

in ns2.  It is not mirrored in the OTcl hierarchy.  The list was modified to include the 

header associated with the IcmpAgent class. 

e. OTcl Packet Configuration 

The file /ns-2.1b8a/tcl/lib/ns-packet.tcl contains the code necessary to 

enable and disable individual packet headers from within an OTcl script, as discussed in 

Chapter IV.  This file was modified to include the header defined for use with the new 

ICMP protocol. 

f. OTcl Default Parameters 

The file /ns-2.1b8a/tcl/lib/ns-default.tcl stores default parameters that are 

assigned to OTcl objects when they are instantiated.  The default value for ICMP packet 

size was added to this file. 

g. Compilation Environment 

The files Makefile.in and ns- lib.tcl are used when building the ns2 

executable.  Makefile.in describes the dependencies among the ns2 source files and 

contains the commands necessary to update the ns2 executable file.  The location and 

names of all new C++ and OTcl files were added to this file.  The names and locations of 

OTcl files that must be compiled into the executable are contained in ns-lib.tcl.  This file 

was updated to include the file ns-diffserv.tcl. 



43 

VI. PERFORMANCE EVALUATION 

A. EXPERIMENTAL DESIGN 

Figure 6.1 shows the ns2 topology that was used to conduct experiments.  The 

OTcl script that sets up this topology is contained in Appendix C.  All hosts and 

intermediate routers are basic Node objects.  All links external to the DiffServ domain 

consist of duplex Link objects with default Queues.  Within the DiffServ domain, 

connections between ingress and core routers consist of two simplex Link objects.  The 

links from ingress to core routers use dsRED/edge queue objects.  The queue at the 

ingress router uses a Token Bucket policer to assign code points to incoming packets.  

The links from core to ingress routers use dsRED/core queue objects. 

One Sniffer and one Icmp agent were attached to the client gateway node.  The 

Sniffer agent was connected to a Null agent attached to the destination node.  The Icmp 

agent was connected to a second Icmp agent attached to the ingress router node.  An 

application that generated constant bit-rate (CBR) traffic (class Application/Traffic/CBR) 

was attached to the Sniffer 

 

Figure 6.1.   Experimental Network Topology 

 

One control agent was attached to the attack controller node.  A reference to this 

agent was stored in the sniffer agent on the gateway.  One flood agent was attached to 

tA

t

tC
Attack

Controller

Client
Gateway

Flood
Sources

Ingress
Router

Destination

Core
Router

tF

DiffServ Domain



44 

each flood source node, and each flooding agent was connected to the null agent installed 

on the destination node.  References to the agents were stored in the list maintained by 

the control agent.  The addresses of the flooding nodes were manually changed to match 

the address of the client gateway in order to simulate the spoofing of source addresses. 

For all simulations, the client and flood sources were set to transmit fixed sized 

packets at a constant bit rate.  A small degree of random variation in packet inter-

departure times was introduced to eliminate synchronization of packet arrival at the 

ingress router.  Link bandwidths were held constant, and were assigned values large 

enough to prevent queues from overflowing. 

In Figure 6.1, the times t , tA , tC , and tF represent the sum of all processing, 

queuing, transmission, and propagation delays incurred by a packet transiting the 

respective link.  We observe that the difference in arrival times at the ingress router of the 

first valid and invalid packets with the same signature, which we have previously named 

d, can be written  

( ) ttttd FCA −++= .     (11) 

As explained in Chapter V, Section B, the attack controller directly accesses the 

flood sources to update code points, thus eliminating the delays on the links between 

them.  For this topology, this is equivalent to setting tC equal to zero.  However, this 

artificiality can be corrected by increasing the delay assigned to either tA, tF, or both, such 

that the sum of tA , tC , and tF represents the total time required for the flow of attack 

packets with a new signature to merge with valid flows with the same signature. 

After examining the IP header format, the Type of Service (ToS) field in the IP 

header was chosen as the mutable portion of the packet signature in our simulation.  This 

field is already included in the simulation’s IP header implementation, so no 

modifications to the header were required.  The ToS field is unused in the non-DiffServ 

routers between the client and the DiffServ provider, so modifying it at the source will 

not affect packet routing outside of the DiffServ domain. 4.  DiffServ ingress routers 

change this field after receipt based on the client’s SLA, so modifying it will not affect 
                                                 

4 In practice, this field would not be used exclusively, since it may be used in transit by networks that 
implement IP Precedence [RFC791]. 



45 

routing within the DS domain.  In the remainder of this section, the term signature refers 

specifically to the combination of IP source address and IP ToS field.  However, other 

fields such as ID or Options could be used in place of or in combination with the ToS 

field to determine packet signature. 

B. EXPERIMENTAL RESULTS 

In our first set of experiments, we compared the out-of-profile rate produced in 

the simulation to that calculated using Equation (9).  Runs were conducted for several 

different values of p0.  The values of W, and p0 were held constant during each run.  The 

value of d was manipulated by varying tA while holding tC, tF, and t constant.  The results 

of these trials are shown in Figure 6.2.   

Figure 6.2.   Predicted Out-of-Profile Rates vs. Measured Results 

 

The second set of experiments was conducted to determine the effect on the DoS 

countermeasure of changing the bucket size for the Token Bucket policer.  In each run, 

the values of W, d, and p0 were held constant.  The size of the token bucket was increased 

Ratio of Valid Traffic
 to Attack Traffic (r /A )

0

10

20

30

40

50

60

70

80

90

100

1 10 100
W / d

P
ac

ke
ts

 M
ar

ke
d

 O
u

t-
o

f-
p

ro
fi

le
 (

%
)

0.5 Predicted
0.5 Results
0.33 Predicted
0.33 Results
0.1 Predicted
0.1 Results
0.01 Predicted
0.01 Results



46 

exponentially until it was large enough to prevent any packets from being dropped 

regardless of their true source.  Runs were conducted for cases in which W>d and W<d.  

The results are plotted in Figure 6.3. 

Figure 6.3.   Effect of Token Bucket Size on Out-of Profile Rate 

 

C. ANALYSIS 

For the first experiment, the simulated results correlated well with the predicted 

results.  For cases in which W was greater than d but the difference between them was 

small, the countermeasure was effective in limiting the out-of-profile rate for valid 

packets.  When W >> d, the out-of-profile rate for valid packets approached p0.  In test 

cases where W < d, no valid packets were dropped as a result of the countermeasure. 

W = 100ms
p0 = 0.33

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

Token Bucket Size (packets)

P
ac

ke
ts

 M
ar

ke
d

 O
u

t-
o

f-
p

ro
fil

e 
(%

)

Invalid, d = 75ms

Valid, d = 75ms

Invalid, d = 110ms

Valid, d = 110ms

Valid (predicted), d= 75ms

Valid (predicted), d=110ms



47 

Results of the second experiment indicate that for our countermeasure, a small 

token bucket size is required to minimize out-of-profile marking for valid traffic while 

maximizing it for invalid traffic.  Bucket sizes that were two to four times the average 

packet size provided the best results.  However, the result of failure to use a small bucket 

size was only slight degradation in the overall performance of the countermeasure. 

The out-of-profile marking rate for valid traffic is higher than predicted if the 

token bucket size is not optimized.  For extremely small token bucket sizes, this is 

expected.  The token bucket allows the maximum arrival rate a router will tolerate for 

short periods to be larger than the average long-term rate.  If the bucket size is small (less 

than twice the size of an average packet), the randomness introduced into inter-packet 

departure times can cause two successive packets to be received at a rate that exceeds the 

maximum arrival rate.  

The observed effectiveness of the countermeasure was also worse than predicted 

for large bucket sizes.  This can be attributed to the longer delay in starting the 

countermeasure that logically accompanies a larger token bucket.  The ingress router will 

treat the initial flood of traffic as a burst.  A larger bucket allows larger bursts, so under 

these conditions, it will take longer for packets to be marked out-of-profile once an attack 

commences. 



48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



49 

VII. CONCLUSIONS 

A. SUMMARY 

DiffServ implementation will have a significant impact on the conduct and 

mitigation of DoS attacks.  The explicit bond between a service provider and its clients 

will allow communication that is difficult to achieve in the current Internet.  This 

research has demonstrated that it is possible to mitigate DoS attacks against DiffServ 

clients and detect service theft without per-packet cryptographic processing.  The tradeoff 

for the reduction in overhead is the potential inability to guarantee a zero loss rate for 

valid traffic entering the DiffServ domain.  The proposed countermeasure can be 

combined with other security protocols if both QoS and security are required.  Its low 

cost in terms of processing requirements makes it an excellent choice as an independent 

monitor for possible breaches of the security protocols. 

B. FUTURE WORK 

The countermeasure and its implementation in ns2 are both in nascent stages of 

development.  The following areas provide opportunities to extend and improve upon the 

work of this thesis. 

1. Countermeasure Hardening 

The proposed countermeasure has been exhaustively analyzed to ensure security.  

However, it has several known weaknesses (see Chapter IV) and additional weaknesses 

may be discovered in the future.  The countermeasure must be refined to secure it against 

these weaknesses, and continually re-examined in light of changes to network devices 

and protocols.  Solutions to known weaknesses must be implemented and their effects on 

the effectiveness of the countermeasure studied. 

2. Realism Improvements 

Simulations using more realistic traffic sources and network topologies must be 

run to allow further validation and study of the DoS countermeasure.  DiffServ client 

traffic was simulated by a CBR traffic source.  This type of source is does not accurately 

model real-world network traffic, which tends to have greater variance in burst size and 

inter-burst timing.  Simulations should be run using various traffic distributions, e.g. 



50 

exponential or Pareto distributions, to examine the performance of the countermeasure 

under more realistic traffic loads.  Exponential and Pareto traffic generation applications 

are implemented in the simulator.  However, they could not be evaluated due to 

synchronization effects observed at the DiffServ ingress router when using them.  

Additional study is required to tune these applications and eliminate synchronization. 

3. Evaluation of Fairness 

As discussed in Chapter IV, the fairness of the countermeasure with respect to 

individual flows has not been determined.  A single traffic source was used to simulate 

client traffic.  Follow-on work should be undertaken to create a simulation topology in 

which traffic from a number of different hosts is aggregated at the client gateway before 

exiting the client’s domain.  Modifications to the countermeasure should be developed to 

correct any inequities observed in the treatment of individual sub-flows of the aggregated 

traffic. 

A topology for testing the fairness of the countermeasure can be implemented 

with only minor modifications to the simulator.  The simulator provides implementations 

for protocols that are likely to be used for traffic requiring QoS guarantees.  One example 

is the class Agent/RTP, which simulates the Real Time Protocol.  A topology could be 

created in which a number of RTP agents in a client domain are provided QoS based on a 

single SLA between the client domain and the DiffServ domain.  This would require all 

agents to send their traffic to a single client gateway, where the traffic would be 

aggregated and forwarded to the DiffServ network.  Implementing the gateway requires 

creation of a new Agent subclass capable of perfo rming these functions. 



51 

APPENDIX A. SOURCE CODE FOR DOS COUNTERMEASURE 
EXTENSIONS TO THE NS2 SIMULATOR 

When the file ns-allinone-2.1b8a.tar is expanded, the main ns2 directory is 

created with the same name (without the .tar extension).  Files listed in this  appendix 

were added to the existing /ns2.1b8a/diffserv subdirectory of the main ns2 directory, with 

the exception of ns-diffserv.tcl, which was added to the /ns2.1b8a/tcl/lib directory. 

 

attack-controller.h 

#ifndef ns_attack_controller_h 
#define ns_attack_controller_h 
 
#include "udp.h" 
#include "flood.h" 
 
class FloodNode { 
public: 
   FloodNode(); 
   FloodAgent* agent; 
   FloodNode* next; 
}; 
 
 
class ControlAgent : public UdpAgent { 
public: 
  ControlAgent(); 
  ControlAgent(packet_t type); 
  int command(int argc, const char*const* argv); 
  void recv(Packet* p, Handler* h); 
  inline ns_addr_t here() { return here_;}; //for use by sniffer agent 
 
private: 
   FloodNode* floodList; 
}; 
 
#endif 
 



52 

attack-controller.cc 

 
#include "attack-controller.h" 
#include <iostream> 
#include "ip.h" 
 
 
//a linked list of the flood agents controlled by this node 
FloodNode::FloodNode() { 
  agent = NULL; 
  next = NULL; 
}; 
 
 
static class ControlClass : public TclClass { 
public: 
    ControlClass() : TclClass("Agent/UDP/Controller") {} 
    TclObject* create(int, const char*const*) { 
        return (new ControlAgent()); 
    } 
} class_control_agent; 
 
 
ControlAgent::ControlAgent() : UdpAgent() { 
        floodList = NULL; 
        bind("packetSize_", &size_); 
} 
 
 
ControlAgent::ControlAgent(packet_t type) : UdpAgent(type) { 
        floodList = NULL; 
        bind("packetSize_", &size_); 
} 
 
 
int ControlAgent::command(int argc, const char*const* argv) { 
  Agent* srcAgent = NULL; 
 
  if (argc == 3) { 
 
    //implementation of tcl command "add-flooder" 
    if (strcmp(argv[1], "add-flooder") == 0) { 
      FloodAgent* newAgent = (FloodAgent*) TclObject::lookup(argv[2]); 
 
      if (newAgent) { 
        //in case feedback has already started 
        newAgent->set_priority(prio_); 
        FloodNode* newNode = new FloodNode(); 
        newNode->agent =  newAgent; 
        newNode->next = floodList; 
        floodList = newNode; 
      } else { 
        cout << argv[2] << " is not a valid flood agent " << endl; 
      } 
 



53 

    return (TCL_OK); 
    } 
  } 
 
  // If the command hasn't been processed by ControlAgent()::command, 
  // call the command() function for the base class 
  return (UdpAgent::command(argc, argv)); 
} 
 
 
// received a sniffed code point 
void ControlAgent::recv(Packet* p, Handler* h) { 
 
  hdr_ip* iph = hdr_ip::access(p); 
 
  // store the newly changed code pt as the controller's code pt 
  prio_ = iph->prio();   
  FloodNode* nodePtr = floodList; 
 
  // Notify each flood agent of the CP change.  In reality this would  
  // have to be transmitted over at least one link, which would take a 
  // finite amount of time.  However, because the addresses of the 
  // flood sources are all changed to match that of the target, sending 
  // a packet to them breaks the Classifier code.  This hack takes zero 
  // sim time, but we compensate by increasing the delay on the 
  // flooder's outgoing links in the simulation script. 
  while (nodePtr) { 
    nodePtr->agent->set_priority(prio_); 
    nodePtr = nodePtr->next; 
  } 
     
  // Discard the packet 
  Packet::free(p); 
} 



54 

dsFeedback.h 

 
#include <map> 
#include <deque> 
#include "agent.h" 
#include "ip.h" 
#include "icmp.h" 
#include "timer-handler.h" 
 
#ifndef ds_feedback_h 
#define ds_feedback_h 
#define MAX_DROPS 3 
#define DROP_WINDOW 5.0 
 
using namespace std; 
 
//specify STL template arguments and rename 
typedef deque<double> timeDeque; 
typedef timeDeque::iterator timeDequeIter; 
 
class FeedbackInfo { //stores info about a specific src/dest pair 
public: 
   FeedbackInfo(); 
   timeDeque times; 
   bool running; 
   long cp1, cp2, seedKey; 
   int maxDrops; 
   double dropWin, keyWin; 
}; 
 
typedef map<ns_addr_t, FeedbackInfo> dest2Fbi; 
typedef dest2Fbi::iterator dest2FbiIter; 
typedef pair<ns_addr_t,FeedbackInfo> destFbiPair; 
typedef map<ns_addr_t,dest2Fbi> src2Dest; 
typedef src2Dest::iterator src2DestIter; 
typedef pair<ns_addr_t,dest2Fbi> srcDestPair; 
 
class dsFeedback { 
  friend class IcmpAgent; 
public: 
  static const int INVALID_CP; 
  static void dropNotify(ns_addr_t src, ns_addr_t dest, 
                         double dropTime, IcmpAgent* icmpAgent); 
  static long generateNextCodePt(const long prev); 
  static long generateInitCodePt(const long seedKey, 
                                 const long secretKey); 
  static bool isFeedbackRunning(ns_addr_t src, ns_addr_t dest); 
  static bool isCodePtValid(ns_addr_t src, ns_addr_t dest,long codePt); 
private: 
  static src2Dest feedbackTable; 
  static const long secretKey; 
  static void sendFeedback (ns_addr_t src, IcmpAgent* icmpAgent, 
                            long seed, double keyWindow); 
}; 
#endif 



55 

dsFeedback.cc 

 
#include "dsFeedback.h" 
#include <iostream> 
#include <math.h> 
 
//initialize static members 
src2Dest dsFeedback::feedbackTable;  
const int dsFeedback::INVALID_CP = -1; 
const long dsFeedback::secretKey = rand(); 
 
// define the less than operator for struct ns_addr_t (see config.h)  
// so we can use it in STL containers 
bool operator< (const ns_addr_t& n1, const ns_addr_t& n2) { 
   return ( (n1.addr_ < n2.addr_) || 
   ((n1.addr_ == n2.addr_) && (n1.port_ < n2.port_)) ); 
} 
 
 
/********************************************************************* 
 * void dropNotify(src, dest, dropTime, icmpAgent)  
 * PRE: None 
 * POST: src/dest pair exists in feedbackTable with dropTime as the 
 *       last entry in its timeDeque.  If MAX_DROPS is exceeded, a 
 *       feedback message has been sent to src 
 * RETURN: void 
 *********************************************************************/ 
void dsFeedback::dropNotify(ns_addr_t src, ns_addr_t dest, 
                            double dropTime, IcmpAgent* icmpAgent) { 
 
  // check to see if this source has an entry already 
  src2DestIter srcIter = feedbackTable.find(src); 
 
  if (srcIter != feedbackTable.end()) {  
 
    //if so, check to see if src is already paired with dest 
    dest2FbiIter destIter = srcIter->second.find(dest); 
  
    if (destIter != srcIter->second.end()) {  
 
 //if so, add dropTime to the list 
      FeedbackInfo* fbi = &(destIter->second); 
      timeDeque* times_ = &(fbi->times); 
      times_->push_back(dropTime); 
 
      //remove all previous drop times outside the current window 
      while (times_->front() < (dropTime - fbi->dropWin)) { 
         times_->pop_front(); 
      } 
 
      //if over drop limit for time window, and feedback not already 
      //active for this pair, send feedback 
      if ( !(fbi->running) && (times_->size() >= MAX_DROPS) ) {  
        long seed = rand(); 
        double keyWindow = 0.100;  //100 milliseconds 



56 

        fbi->running = true; 
        fbi->cp1 = 0; 
        fbi->cp2 = generateInitCodePt(seed, secretKey); 
        fbi->keyWin = keyWindow; 
        fbi->seedKey = seed; 
        icmpagent->sendFB(src, seed, keyWindow); 
        return; 
      } 
 
    } else { //no entry for this (src,dest) pair 
      FeedbackInfo fbi; 
      srcIter->second.insert(destFbiPair(dest,fbi)); 
 
      // can't just insert dropTime, since one drop may be enough to 
      // trigger feedback message.  Notify again instead 
      dropNotify(src, dest, dropTime, icmpAgent);  
    } 
 
  } else {//add new entries for src,dest, and dropTime 
    FeedbackInfo fbi; 
    dest2Fbi d2f; 
    d2f.insert(destFbiPair(dest,fbi)); 
    feedbackTable.insert(srcDestPair(src,d2f)); 
 
    // can't just insert dropTime, since one drop may be enough to 
    // trigger feedback message.  Notify again instead 
    dropNotify(src, dest, dropTime, icmpAgent); 
  } 
  return; 
} //end dropNotify() 
 
 
/********************************************************************* 
 * bool isCodePtValid(src,dest,codePt)  
 * PRE:  None 
 * POST: if codePt = cp2 in the src/dest entry of the feedback table, 
 *       cp1 is assigned cp2, and a new value for cp2 is generated. 
 * RETURN: true if code point is valid or there is no entry for this 
 *         src/dest pair, false otherwise 
 *********************************************************************/ 
bool dsFeedback::isCodePtValid(ns_addr_t src, ns_addr_t dest, 
                                                        long codePt) { 
 
  src2DestIter srcIter = feedbackTable.find(src); 
 
  if (srcIter != feedbackTable.end()) { 
    dest2FbiIter destIter = srcIter->second.find(dest); 
 
    if (destIter != srcIter->second.end()) { 
      FeedbackInfo* fbi = &(destIter->second); 
 
      if (fbi->running) { //don't check if FB isn't active 
 
        if (fbi->cp1 != codePt) { 
 
          if (fbi->cp2 != codePt) { return false; } 
 



57 

          else { // codePt = cp2 
            fbi->cp1 = fbi->cp2; 
            fbi->cp2 = generateNextCodePt(fbi->cp2); 
          } 
        }  
      } 
    } 
  } 
  return true; 
} //end isCodePointValid() 
 
 
/********************************************************************* 
 * long generateNextCodePt(prev)  
 * PRE: None 
 * POST: None 
 * RETURN: A code point between 1 and 255 generated based on the 
 *         previous code point 
 *********************************************************************/ 
long dsFeedback::generateNextCodePt(const long prev) { 
  long nextCodePt; 
   
  //replace this section with the desired hash function    
  // hash function 
  nextCodePt = prev % 255 + 1; 
  // end hash function 
 
  return nextCodePt; 
} //end generateNextCodePt() 
 
 
/********************************************************************* 
 * bool feedbackRunning(src,dest) 
 * PRE: None 
 * POST: None 
 * RETURN: True if the feedback mechanism is active for this src/dest 
 *         pair, false otherwise 
 *********************************************************************/ 
bool dsFeedback::isFeedbackRunning(ns_addr_t src, ns_addr_t dest) { 
  src2DestIter srcIter = feedbackTable.find(src); 
 
  if (srcIter != feedbackTable.end()) { 
    dest2FbiIter destIter = srcIter->second.find(dest); 
 
    if (destIter != srcIter->second.end()) { 
      return destIter->second.running; 
 
    } else { //in anticipation of checking this pair again later 
      FeedbackInfo fbi; 
      srcIter->second.insert(destFbiPair(dest,fbi)); 
    } 
 
  } else { //in anticipation of checking this pair again later 
    FeedbackInfo fbi; 
    dest2Fbi d2f; 
    d2f.insert(destFbiPair(dest,fbi)); 
    feedbackTable.insert(srcDestPair(src,d2f)); 



58 

  } 
 
  return false; 
} //end feedbackRunning() 
 
 
/********************************************************************* 
 * int generateInitCodePt(const long seedKey, const long secretKey) 
 * PRE: None 
 * POST: None 
 * RETURN: The initial code point based on seedKey and secretKey 
 *********************************************************************/ 
long dsFeedback::generateInitCodePt(const long seedKey, 
                                    const long secretKey) { 
  long combinedKey = seedKey ^ secretKey; 
  return generateNextCodePt(combinedKey); 
} //end generateInitCodePt() 
 
 
/********************************************************************* 
 * FeedbackInfo() 
 * Constructor for class FeedbackInfo 
 *********************************************************************/ 
FeedbackInfo::FeedbackInfo() { 
  running = false; 
  cp1 = 0; 
  cp2 = 0; 
  maxDrops = MAX_DROPS; 
  dropWin = DROP_WINDOW; 
  keyWin = 0; 
  seedKey = 0; 
} 
 



59 

icmp.h 

 
#ifndef ns_icmp_h 
#define ns_icmp_h 
 
#include "agent.h" 
#include "tclcl.h" 
#include "packet.h" 
#include "ip.h" 
#include "sniffer.h" 
 
 
struct hdr_icmp { 
  ns_addr_t origSrc; 
  long seed;        // seed value for the codePt hash function 
  double codePtWin; // how often the sender should change code points 
   
  static int offset_; 
  inline static int& offset() { return offset_; } 
  inline static hdr_icmp* access(const Packet* p) { 
    return (hdr_icmp*) p->access(offset_); 
  } 
}; 
 
 
class CodePtTimer : public TimerHandler { 
public: 
   CodePtTimer (SnifferAgent* srcAgent, long newCP, double codePtWin); 
   void expire(Event* e); 
 
protected: 
   SnifferAgent* agent; 
   long currentCP; 
   double delay; 
}; 
 
 
class IcmpAgent : public Agent { 
public: 
  IcmpAgent(); 
  IcmpAgent(packet_t type); 
  int command(int argc, const char*const* argv); 
  void recv(Packet*, Handler*); 
  void sendFB(ns_addr_t src, long seed, double keyWindow); 
 
private: 
  CodePtTimer* timer; 
}; 
#endif 



60 

icmp.cc 

#include "icmp.h" 
#include "dsFeedback.h" 
 
//initialize static member 
int hdr_icmp::offset_; 
 
 
// CodePtTimer constructor  
CodePtTimer::CodePtTimer(SnifferAgent* src, long newCP, double cpWin)  
       : TimerHandler(), agent(src), delay(cpWin), currentCP(newCP){}; 
 
// Definition of virtual function declared in base class TimerHandler 
void CodePtTimer::expire(Event* e) { 
 
   if (agent != 0) { 
      cout << "Agent changing code pt..."  <<  endl; 
      currentCP = dsFeedback::generateNextCodePt(currentCP); 
      agent->set_priority(currentCP); 
      resched(delay); 
   } 
} 
 
// Add ICMP header to OTcl hierarchy 
static class IcmpHeaderClass : public PacketHeaderClass { 
public: 
 IcmpHeaderClass() : PacketHeaderClass("PacketHeader/ICMP",  
           sizeof(hdr_icmp)) { 
  bind_offset(&hdr_icmp::offset_); 
        } 
 void export_offsets() { 
  field_offset("origSrc", OFFSET(hdr_icmp, origSrc)); 
  field_offset("seed", OFFSET(hdr_icmp, seed)); 
  field_offset("codePtWin", OFFSET(hdr_icmp, codePtWin)); 
 } 
} class_icmphdr; 
 
 
// Add ICMPAgent class to OTcl hierarchy 
static class IcmpClass : public TclClass { 
public: 
 IcmpClass() : TclClass("Agent/ICMP") {} 
 TclObject* create(int, const char*const*) { 
  return (new IcmpAgent()); 
 } 
} class_icmp; 
 
// IcmpAgent constructors 
IcmpAgent::IcmpAgent() : Agent(PT_ICMP) { 
 bind("packetSize_", &size_); 
} 
 
 
IcmpAgent::IcmpAgent(packet_t type) : Agent(type) { 
 bind("packetSize_", &size_); 



61 

} 
 
 
int IcmpAgent::command(int argc, const char*const* argv) { 
 
  if (argc == 2) { 
 
    if (strcmp(argv[1], "send") == 0) { 
      Packet* p = allocpkt(); 
      hdr_icmp* hdr = hdr_icmp::access(p); 
      hdr->seed = 2; 
      hdr->codePtWin = 0.005; 
      send(p,0); 
    } 
  } 
 
  // If the command hasn't been processed by IcmpAgent()::command, 
  // call the command() function for the base class 
  return (Agent::command(argc, argv)); 
} 
 
 
/********************************************************************* 
 * void recv(pkt,h) 
 * PRE:  Packet pkt contains the port number of the agent whose  
 *       dropped packet caused the feedback message to be sent 
 * POST: DoS countermeasure is started for that agent 
 * RETURN: void 
 *********************************************************************/ 
void IcmpAgent::recv(Packet* pkt, Handler* h) { 
  hdr_icmp* hdr = hdr_icmp::access(pkt); 
  long seed = hdr->seed; 
 
  // Call the OTcl procedure 'Agent/Icmp get-agent-handle {port}' 
  // which returns a handle to the source agent (see ns-diffserv.tcl) 
  char out[128]; 
  sprintf(out, "%s get-agent-handle %d", name(), hdr->origSrc.port_);  
  Tcl& tcl = Tcl::instance(); 
  tcl.eval(out); 
  SnifferAgent* src = (SnifferAgent*) TclObject::lookup(tcl.result()); 
   
  if (src != 0) { 
    //Calculate new code point and change it 
    long newCP =  
          dsFeedback::generateInitCodePt(seed, dsFeedback::secretKey); 
    src->set_priority(newCP); 
    //create timer and schedule the next code point change 
    timer = new CodePtTimer(src, newCP, hdr->codePtWin); 
    timer->sched(hdr->codePtWin); 
  } else { 
    cout << "No object in lookup table for " << tcl.result() << endl; 
  } 
 
  // free the memory assigned to the received packet 
  Packet::free(pkt); 
} 
 



62 

/********************************************************************* 
 * void recv(pkt,h) 
 * PRE:  None 
 * POST: Feedback message sent to src 
 * RETURN: void 
 *********************************************************************/ 
void IcmpAgent::sendFB(ns_addr_t src, long seed, double keyWindow) { 
  Packet* p = allocpkt(); 
  hdr_icmp* hdr = hdr_icmp::access(p); 
  hdr->origSrc = src; 
  hdr->seed = seed; 
  hdr->codePtWin = keyWindow; 
  send(p,0); 
} 
 

ns-diffserv.tcl 
 
Agent instproc set_priority {newprio} { 
    $self instvar prio_ 
    set prio_ newprio 
} 
 
 
Agent instproc prio {} { 
    $self instvar prio_ 
    return $prio_ 
} 
 
 
Agent/ICMP instproc get-agent-handle {port} { 
    $self instvar node_ 
    set src_agent [$node_ agent $port] 
    return [$node_ agent $port] 
} 
 



63 

sniffer.h 

 
#ifndef ns_sniffer_h 
#define ns_sniffer_h 
 
#include "udp.h" 
#include "attack-controller.h" 
 
 
class SnifferAgent : public UdpAgent { 
public: 
  SnifferAgent(); 
  SnifferAgent(packet_t type); 
  inline int prio() { return prio_;}; 
 
  // override functions in parent classes 
  int command(int argc, const char*const* argv); 
  void sendmsg(int nbytes, const char* flags);  
  void set_priority(int priority); 
 
private: 
  bool codePtChanged; 
  ControlAgent* controller;  
  //ControlAgent defined in attack-controller.{h,cc} 
}; 
 
#endif 
 

sniffer.cc 

 
#include "sniffer.h" 
#include <iostream> 
#include "ip.h" 
 
// Add SnifferAgent to thew OTcl hierarchy 
static class SnifferClass : public TclClass { 
public: 
 SnifferClass() : TclClass("Agent/UDP/Sniffer") {} 
 TclObject* create(int, const char*const*) { 
  return (new SnifferAgent()); 
 } 
} class_sniffer_agent; 
 
// SnifferAgent constructors 
SnifferAgent::SnifferAgent() : UdpAgent() { 
        controller = NULL; 
        codePtChanged = true; 
 bind("packetSize_", &size_); 
} 
 
SnifferAgent::SnifferAgent(packet_t type) : UdpAgent(type) { 
        controller = NULL; 
        codePtChanged = true; 
 bind("packetSize_", &size_); 



64 

} 
 
 
int SnifferAgent::command(int argc, const char*const* argv) { 
  Agent* srcAgent = NULL; 
 
  if (argc == 3) { 
 
    // C++ implmentation of OTcl  
    // 'Agent/UDP/Sniffer set-controller <agent-handle>' 
    if (strcmp(argv[1], "set-controller") == 0) { 
      ControlAgent* newAg = (ControlAgent*)TclObject::lookup(argv[2]); 
 
      if (newAg != NULL) { 
        controller = newAg; 
      } else { 
        cout << argv[2] <<  " is not a valid agent " << endl; 
      } 
    return (TCL_OK); 
    } 
  } 
 
  // If the command hasn't been processed by SnifferAgent()::command, 
  // call the command() function for the base class 
  return (UdpAgent::command(argc, argv)); 
} 
 
 
void SnifferAgent::sendmsg(int nbytes, const char* flags) { 
  Packet* snfPkt = NULL; 
 
  // notify controller only when code point has changed 
  if (codePtChanged && (controller != NULL)) { 
    codePtChanged = false; 
    snfPkt = allocpkt(); 
    hdr_ip* ip_snf = hdr_ip::access(snfPkt); 
    ip_snf->dst_ = controller->here(); 
  } 
 
  //need to ensure that packet is sent before it is "sniffed" 
  UdpAgent::sendmsg(nbytes, flags); 
 
  if (snfPkt != NULL) { 
    // send "sniffed" code point to controller 
    Connector::send(snfPkt,0); 
  } 
} 
 
 
void SnifferAgent::set_priority(int priority) { 
  prio_ = priority; 
  // ensure that a changed code point triggers a message to the 
  // sniffer controller when the next packet is sent by this source 
  codePtChanged = true; 
} 
 



65 

flood.h 

 
#ifndef ns_flood_h 
#define ns_flood_h 
 
#include "udp.h" 
 
class FloodAgent : public UdpAgent { 
public: 
  FloodAgent(); 
  FloodAgent(packet_t type); 
  int command(int argc, const char*const* argv); 
  void recv(Packet* p, Handler* h); 
  inline ns_addr_t here() { return here_;}; 
}; 
 
#endif 
 

flood.cc 

#include "flood.h" 
#include "ip.h" 
 
static class FloodClass : public TclClass { 
public: 
 FloodClass() : TclClass("Agent/UDP/Flood") {} 
 TclObject* create(int, const char*const*) { 
  return (new FloodAgent()); 
 } 
} class_flood_agent; 
 
 
FloodAgent::FloodAgent() : UdpAgent() { 
 bind("packetSize_", &size_); 
} 
 
 
FloodAgent::FloodAgent(packet_t type) : UdpAgent(type) { 
 bind("packetSize_", &size_); 
} 
 
 
int FloodAgent::command(int argc, const char*const* argv) { 
  // call the command() function for the base class 
  return (UdpAgent::command(argc, argv)); 
} 
 
void FloodAgent::recv(Packet* p, Handler* h) { 
  hdr_ip* iph = hdr_ip::access(p); 
  set_priority(iph->prio()); 
 
  // Discard the packet 
  Packet::free(p); 
} 



66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



67 

APPENDIX B. MODIFIED NS2 SOURCE CODE 

Files listed in this appendix are modified versions of existing ns2 files.  

Modifications are labeled [FEEDBACK].  For brevity, unmodified sections have been 

omitted. 

agent.h 

 
/* 
 * Copyright (c) 1993-1997 Regents of the University of California. 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
 *    the documentation and/or other materials provided with the 
 *    distribution. 
 * 3. All advertising materials mentioning features or use of this 
 *    software must display the following acknowledgement: 
 *    This product includes software developed by the Computer Systems 
 *    Engineering Group at Lawrence Berkeley Laboratory. 
 * 4. Neither the name of the University nor of the Laboratory may be 
 *    used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' 
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A  
 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR  
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF  
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND  
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,  
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF  
 * SUCH DAMAGE. 
*/ 
#ifndef ns_agent_h 
#define ns_agent_h 
 
#include "connector.h" 
#include "packet.h" 
#include "timer-handler.h" 
#include "ns-process.h" 
#include "app.h" 



68 

 
#define TIMER_IDLE 0 
#define TIMER_PENDING 1 
 
/*  
 * Note that timers are now implemented using timer-handler.{cc,h} 
 */ 
 
#define TRACEVAR_MAXVALUELENGTH 128 
 
class Application; 
 
 
// store old value of traced vars 
// work only for TracedVarTcl 
struct OldValue { 
    TracedVar *var_; 
    char val_[TRACEVAR_MAXVALUELENGTH]; 
    struct OldValue *next_; 
}; 
 
class Agent : public Connector { 
 public: 
    Agent(packet_t pktType); 
    virtual ~Agent(); 
    void recv(Packet*, Handler*); 
     
    //added for edrop tracing - ratul 
    void recvOnly(Packet *) {}; 
 
    void send(Packet* p, Handler* h) { target_->recv(p, h); } 
    virtual void timeout(int tno); 
 
    virtual void sendmsg(int sz, AppData*, const char* flags = 0); 
    virtual void send(int sz, AppData *data) { sendmsg(sz, data, 0); } 
    virtual void sendto(int sz, AppData*, const char* flags = 0); 
 
    virtual void sendmsg(int nbytes, const char *flags = 0); 
    virtual void send(int nbytes) { sendmsg(nbytes); } 
    virtual void sendto(int nbytes, const char* flags, nsaddr_t dst); 
    virtual void connect(nsaddr_t dst); 
    virtual void close(); 
    virtual void listen(); 
    virtual void attachApp(Application* app); 
    virtual int& size() { return size_; } 
    inline nsaddr_t& addr() { return here_.addr_; } 
    inline nsaddr_t& port() { return here_.port_; } 
    inline nsaddr_t& daddr() { return dst_.addr_; } 
    inline nsaddr_t& dport() { return dst_.port_; } 
    void set_pkttype(packet_t pkttype) { type_ = pkttype; } 
    void set_priority(int priority) { prio_ = priority; } //[FEEDBACK] 
 
 protected: 
    int command(int argc, const char*const* argv); 
    virtual void delay_bind_init_all(); 
    virtual int delay_bind_dispatch(const char *varName, 
                             const char *localName, TclObject *tracer); 



69 

 
    virtual void recvBytes(int bytes); 
    virtual void idle(); 
    Packet* allocpkt() const;  // alloc + set up new pkt 
    Packet* allocpkt(int) const; // same, but w/data buffer 
    void initpkt(Packet*) const; // set up fields in a pkt 
 
    ns_addr_t here_;  // address of this agent 
    ns_addr_t dst_;   // destination address for pkt flow 
    int size_;   // fixed packet size 
    packet_t type_;   // type to place in packet header 
    int fid_;   // for IPv6 flow id field 
    int prio_;   // for IPv6 prio field 
    int flags_;   // for experiments (see ip.h) 
    int defttl_;   // default ttl for outgoing pkts 
 
#ifdef notdef 
    int seqno_;  /* current seqno */ 
    int class_;  /* class to place in packet header */ 
#endif 
 
    static int uidcnt_; 
 
    Tcl_Channel channel_; 
    char *traceName_;  // name used in agent traces 
    OldValue *oldValueList_;  
 
    Application *app_;  // ptr to application for callback 
 
    virtual void trace(TracedVar *v); 
    void deleteAgentTrace(); 
    void addAgentTrace(const char *name); 
    void monitorAgentTrace(); 
    OldValue* lookupOldValue(TracedVar *v); 
    void insertOldValue(TracedVar *v, const char *value); 
    void dumpTracedVars(); 
 private: 
    void flushAVar(TracedVar *v); 
}; 
 
#endif 



70 

dsred.h 

/* Copyrights (c) 2000 Nortel Networks 
********************************************************************** 
 * All rights reserved. 
 *  
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
 *    the documentation and/or other materials provided with the  
 *    distribution. 
 * 3. All advertising materials mentioning features or use of this  
 *    software 
 *    must display the following acknowledgement: 
 *      This product includes software developed by Nortel Networks. 
 * 4. The name of the Nortel Networks may not be used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 *  
 * THIS SOFTWARE IS PROVIDED BY NORTEL AND CONTRIBUTORS ``AS IS'' AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,  
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A  
 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NORTEL OR  
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF  
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND  
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,  
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY  
 * OF SUCH DAMAGE. 
 * 
 * Developed by: Farhan Shallwani, Jeremy Ethridge 
 *               Peter Pieda, and Mandeep Baines 
 * Maintainer: Peter Pieda <ppieda@nortelnetworks.com> 
 */ 
 
/* 
 * dsred.h 
 * 
 * The Positions of dsREDQueue, edgeQueue, and coreQueue in the Object  
 * Hierarchy. 
 * 
 * This class, i.e. "dsREDQueue", is positioned in the class hierarchy  
 * as follows: 
 * 
 *             Queue 
 *               | 
 *           dsREDQueue 
 * 
 * 
 *   This class stands for "Differentiated Services RED Queue".  Since  



71 

 * the original RED does not support multiple parameters, and other  
 * functionality needed by a RED gateway in a Diffserv architecture,  
 * this class was created to support the desired functionality.  This  
 * class is then inherited by two more classes, moulding the old  
 * hierarchy as follows: 
 * 
 * 
 *             Queue 
 *               | 
 *           dsREDQueue 
 *           |        | 
 *     edgeQueue    coreQueue 
 * 
 * 
 * These child classes correspond to the "edge" and "core" routers in a  
 * Diffserv architecture. 
 * 
 */ 
 
 
#ifndef dsred_h 
#define dsred_h 
 
#include "red.h" // need RED class specs (edp definition, for example) 
#include "queue.h" // need Queue class specs 
#include "dsredq.h" 
#include "agent.h" 
#include "icmp.h" //[FEEDBACK] 
 
 
/* The dsRED class supports the creation of up to MAX_QUEUES physical  
 * queues at each network device, with up to MAX_PREC virtual queues in 
 * each queue. */  
#define MAX_QUEUES 8 // maximum number of physical RED queues 
#define MAX_PREC 3  // maximum number of virtual RED queues in one 
                    // physical queue 
#define MAX_CP 256 // maximum number of code points in a 
simulation 
#define MEAN_PKT_SIZE 1000  // default mean packet size, in bytes, 
                              // needed for RED calculations 
 
enum schedModeType {schedModeRR, schedModeWRR, schedModeWIRR, 
schedModePRI}; 
 
#define PKT_MARKED 3 
#define PKT_EDROPPED 2 
#define PKT_ENQUEUED 1 
#define PKT_DROPPED 0 
 
 
/*--------------------------------------------------------------------- 
struct phbParam 
    This struct is used to maintain entries for the PHB parameter 
table, used  
to map a code point to a physical queue-virtual queue pair. 
---------------------------------------------------------------------*/ 
struct phbParam { 



72 

   int codePt_; 
   int queue_; // physical queue 
   int prec_; // virtual queue (drop precedence) 
}; 
 
struct statType { 
 long drops;       // per queue stats 
 long edrops; 
 long pkts; 
 long valid_CP[MAX_CP];  // per CP stats 
 long drops_FB; // [FEEDBACK]packets droped due to feedback 
 long drops_CP[MAX_CP]; 
 long edrops_CP[MAX_CP]; 
 long pkts_CP[MAX_CP]; 
}; 
 
 
/*-------------------------------------------------------------------- 
class dsREDQueue  
    This class specifies the characteristics for a Diffserv RED router. 
--------------------------------------------------------------------*/ 
 
class dsREDQueue : public Queue { 
public:  
   dsREDQueue(); 
   int command(int argc, const char*const* argv); // interface to ns 
                                                  //scripts 
 
protected: 
  redQueue redq_[MAX_QUEUES]; // the physical queues at the router 
  NsObject* de_drop_;  // drop_early target 
  IcmpAgent* icmpAgent; //[FEEDBACK] the icmp agent associated with 
                        // this queue 
  statType stats; // used for statistics gatherings 
  int qToDq; // current queue to be dequeued in a round robin manner 
  int numQueues_; // the number of physical queues at the router 
  int numPrec;   // the number of virtual queues in each physical queue 
  phbParam phb_[MAX_CP];  // PHB table 
  int phbEntries;     // the current number of entries in the PHB table 
  int ecn_;          // used for ECN (Explicit Congestion Notification) 
  LinkDelay* link_;  // outgoing link 
    int schedMode;                  // the Queue Scheduling mode 
    int queueWeight[MAX_QUEUES];    // A queue weight per queue 
    double queueMaxRate[MAX_QUEUES]; // Max Rate for Priority Queueing 
    double queueAvgRate[MAX_QUEUES]; // Avg Rate for Priority Queueing 
    double queueArrTime[MAX_QUEUES]; // Arr Time for Priority Queueing 
      int slicecount[MAX_QUEUES]; 
      int pktcount[MAX_QUEUES]; 
      int wirrTemp[MAX_QUEUES]; 
      unsigned char wirrqDone[MAX_QUEUES]; 
  int queuesDone; 
 
  void reset(); 
  void edrop(Packet* p); // used so flowmonitor can monitor early drops 
  void enque(Packet *pkt); // enques a packet 
  Packet *deque(void); // deques a packet 
  int getCodePt(Packet *p); // given a packet, extract the code point 



73 

                            // marking from its header field 
  void selectQueueToDeque();// round robin scheduling dequing algorithm 
  void lookupPHBTable(int codePt, int* queue, int* prec); // looks up  
                 //queue and prec numbers corresponding to a code point 
  void addPHBEntry(int codePt, int queue, int prec); // edits phb entry 
                                                     // in the table 
  void setNumPrec(int curPrec); 
  void setMREDMode(const char* mode, const char* queue); 
  void printStats(); // print various stats 
  double getStat(int argc, const char*const* argv); 
  void printPHBTable();  // print the PHB table 
  void setSchedularMode(const char* schedtype); //Sets the schedular 
                                                // mode 
  void addQueueWeights(int queueNum, int weight); // Add a maxRate to a 
                                                  // PRI queue 
  void addQueueRate(int queueNum, int rate); // Add a weigth to a WRR 
                                             // or WIRR queue 
  void printWRRcount();  // print various stats 
  void applyTSWMeter(Packet *pkt); // apply meter to calculate average 
                                   // rate of a PRI queue 
}; 
 
#endif 
 

dsred.cc 
/* Copyrights (c) 2000 Nortel Networks 
********************************************************************** 
 * All rights reserved. 
 *  
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
 *    the documentation and/or other materials provided with the  
 *    distribution. 
 * 3. All advertising materials mentioning features or use of this  
 *    software 
 *    must display the following acknowledgement: 
 *      This product includes software developed by Nortel Networks. 
 * 4. The name of the Nortel Networks may not be used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 *  
 * THIS SOFTWARE IS PROVIDED BY NORTEL AND CONTRIBUTORS ``AS IS'' AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,  
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A  
 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NORTEL OR  
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF  
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND  
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,  



74 

 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY  
 * OF SUCH DAMAGE. 
 * 
 * Developed by: Farhan Shallwani, Jeremy Ethridge 
 *               Peter Pieda, and Mandeep Baines 
 * Maintainer: Peter Pieda <ppieda@nortelnetworks.com> 
 */ 
 
#include <stdio.h> 
#include "ip.h" 
#include "dsred.h" 
#include "delay.h" 
#include "random.h" 
#include "flags.h" 
#include "tcp.h" 
#include "dsredq.h" 
 
//[FEEDBACK] 
#ifdef ds_feedback_h 
  #include "dsFeedback.h"  
#endif 
 

. 

. 

. 
 

/*---------------------------------------------------------------------
--------- 
void enque(Packet* pkt)  
    The following method outlines the enquing mechanism for a Diffserv 
router. 
This method is not used by the inheriting classes; it only serves as an  
outline. 
-----------------------------------------------------------------------
-------*/ 
void dsREDQueue::enque(Packet* pkt) { 
  int codePt, queue, prec; 
  hdr_ip* iph = hdr_ip::access(pkt); 
  ns_addr_t src = iph->src(); 
  ns_addr_t dst = iph->dst(); 
  bool dropped = false; //[FEEDBACK] 
 
  codePt = iph->prio();//extracting the marking done by the edge router 
  int ecn = 0; 
  double now = Scheduler::instance().clock(); 
 
  stats.pkts++; 
 
// [FEEDBACK]  
#ifdef ds_feedback_h 
  //if codePt is invalid, drop without any other processing 
  if (codePt == dsFeedback::INVALID_CP) { 
    cout << "Dropped due to invalid CP" << endl; 
    stats.drops_FB++; // [FEEDBACK] increment count of 
                      // feedback related drops 
    stats.drops++; 



75 

    drop(pkt); 
    dropped = true; 
  } 
#endif 
 
  if (!dropped) {  //[FEEDBACK] allow further processing 
    //looking up queue and prec numbers for that codept 
    lookupPHBTable(codePt, &queue, &prec);  
 
    // code added for ECN support 
    hdr_flags* hf = hdr_flags::access(pkt); 
//line 200 
    if (ecn_ && hf->ect()) ecn = 1; 
 
    stats.pkts_CP[codePt]++; 
     
    switch(redq_[queue].enque(pkt, prec, ecn)) { 
      case PKT_ENQUEUED: 
        break; 
 
      case PKT_DROPPED: 
        stats.drops_CP[codePt]++; 
        stats.drops++; 
        cout << "Dropped by dsredq." << endl; 
 
#ifdef ds_feedback_h 
        //[FEEDBACK] notify sender of packet dropped by edge router 
        if (!dsFeedback::isFeedbackRunning(src,dst)) { 
          dsFeedback::dropNotify(src, dst, now, icmpAgent); 
        } 
#endif 
 
        drop(pkt); 
        break; 
 
      case PKT_EDROPPED: 
        stats.edrops_CP[codePt]++; 
        stats.edrops++; 
        cout << "Early dropped by dsredq." << endl;  
 
#ifdef ds_feedback_h 
        //[FEEDBACK] notify sender of packet dropped by edge router 
        if (!dsFeedback::isFeedbackRunning(src,dst)) { 
          dsFeedback::dropNotify(src, dst, now, icmpAgent); 
        } 
#endif 
 
        edrop(pkt); 
        break; 
 
      case PKT_MARKED: 
        hf->ce() = 1;  // mark Congestion Experienced bit   
        break;    
 
      default: 
        break; 
    } 



76 

  } 
} 
 

. 

. 

. 
 

/*---------------------------------------------------------------------
--------- 
int command(int argc, const char*const* argv) 
    Commands from the ns file are interpreted through this interface. 
-----------------------------------------------------------------------
-------*/ 
int dsREDQueue::command(int argc, const char*const* argv) 
{ 
 

. 

. 

. 
 

 
  if (argc == 3) {  //[FEEDBACK] set the icmp agent handle  
 
    if (strcmp(argv[1], "set-icmp-agent") == 0) { 
      Tcl& tcl = Tcl::instance(); 
      IcmpAgent* agent = (IcmpAgent*) TclObject::lookup(argv[2]); 
 
      if (agent == NULL) { 
        tcl.resultf("[dsRED][FEEDBACK] No agent %s", argv[2]); 
      return (TCL_ERROR); 
      }  
 
      icmpAgent = agent; 
      return(TCL_OK); 
    } 
  }   
 
 
  return(Queue::command(argc, argv)); 
} 
 
 



77 

APPENDIX C. SAMPLE OTCL SCRIPT 

test_default.tcl 

#--------------------------------------------------------------------- 
# test_default.tcl 
# Author: Matthew Braun 
# Dates: Aug 28, 2002 
# Notes: Heavily modified from the example file  
# ~ns/tcl/ex/diffserv/ds-cbr-TSW3CM.tcl written by Jeremy Ethridge. 
# 
#  ----       ------            ------   ----   ------   ----   ------ 
#  |s1|-------|ext1|------------|ext2|---|e1|---|core|---|e2|---|dest| 
#  ----       ------            ------   ----   ------   ----   ------ 
#                |                | 
#                |                | 
#                |                | 
#                |                | 
#                |                |                            
#                |                |                           
#             --------          ----          
#             |attack|----------|z1| 
#             --------          ---- 
#                   
#--------------------------------------------------------------------- 
 
#    W = 2d 
#  r+A = 2CIR 
# good source sends 2500 packets (2.0 seconds) while under attack 
 
set ns [new Simulator] 
set nf [open test_def.nam w] 
set dest_trace [open dest.trace w] 
#$ns namtrace-all $nf 
 
proc finish {} { 
     global ns nf 
     $ns flush-trace 
     close $nf 
#     exec nam test_def.nam & 
     exit 0 
} 
 
# difference between paths 
  set delta "110ms" 
 
# tokenBucket parameters 
  set cir0   10000000 
  set cbs0       4001 
 
# source parameters rates 
  set rate0  10000000 
  set rate1  10000000 
  set packetSize 1000 



78 

 
# pareto (or exponential) parameters 
  set burstTime 500ms 
  set idleTime  20ms 
  set parShape 1.9 
 
# port numbers  
  set udpPort 1 
  set icmpPort 2 
  set cbrPort 1 
 
# traffic type in use 
#  set traf_type "Exponential" 
#  set traf_type "Pareto" 
 set traf_type "CBR" 
 
# simulation parameters 
  set testTime 2.5 
 
# Set up the network topology shown at the top of this file: 
$ns node-config -addressingType heir 
set source1 [$ns node]  
 
set attacker [$ns node] 
set extern1 [$ns node] 
set extern2 [$ns node] 
 
# Set src addr of malicioius packets to the addr of the good src 
set flood1 [$ns node [$source1 node-addr]] 
set flood2 [$ns node [$source1 node-addr]] 
 
set edge1 [$ns node] 
set core [$ns node] 
set edge2 [$ns node] 
set dest [$ns node] 
 
#create links between nodes 
$ns duplex-link $source1 $extern1 100Mb 10ms DropTail 
#set link_src_ext [$ns link $source1 $extern1] 
#$source1 add-route [$attacker id] [$link_src_ext head] 
 
$ns duplex-link $extern1 $attacker 100Mb $delta DropTail 
$ns duplex-link $extern1 $extern2  100Mb 100ms DropTail 
$ns duplex-link $attacker $zombie1 1Mb 100ms DropTail 
$ns duplex-link $attacker $zombie2 1Mb 100ms DropTail 
$ns duplex-link $zombie1 $extern2  1000Mb  100ms DropTail 
$ns duplex-link $zombie2 $extern2  1000Mb  100ms DropTail 
$ns duplex-link $extern2 $edge1    1000Mb  10ms DropTail 
 
 
$ns duplex-link $edge2 $dest 100Mb 5ms DropTail 
$ns simplex-link $edge1 $core 100Mb 5ms dsRED/edge 
$ns simplex-link $core $edge1 100Mb 5ms dsRED/core 
$ns simplex-link $core $edge2 100Mb 5ms dsRED/core 
$ns simplex-link $edge2 $core 100Mb 5ms dsRED/edge 
 
 



79 

#nam layout of nodes 
$ns duplex-link-op $source1 $extern1 orient down-right 
$ns duplex-link-op $extern1 $extern2 orient right 
$ns duplex-link-op $attacker $extern1 orient up 
$ns duplex-link-op $attacker $zombie1 orient right 
$ns duplex-link-op $attacker $zombie2 orient right 
$ns duplex-link-op $zombie1 $extern2 orient up 
$ns duplex-link-op $zombie2 $extern2 orient up 
$ns duplex-link-op $extern2 $edge1 orient right 
$ns duplex-link-op $edge1 $core orient right 
$ns duplex-link-op $core $edge2 orient right 
$ns duplex-link-op $edge2 $dest orient down 
 
 
#create dsred queues on the simplex links in the DS domain 
set qE1C [[$ns link $edge1 $core] queue] 
set qE2C [[$ns link $edge2 $core] queue] 
set qCE1 [[$ns link $core $edge1] queue] 
set qCE2 [[$ns link $core $edge2] queue] 
 
 
# Set DS RED parameters from Edge1 to Core: 
$qE1C meanPktSize $packetSize 
$qE1C set numQueues_ 2 
$qE1C setNumPrec 1 
$qE1C setMREDMode DROP 
$qE1C setSchedularMode PRI 
$qE1C addQueueRate 0 $cir0 
$qE1C addPolicyEntry [$source1 node-addr] 
                        [$dest node-addr] TokenBucket 10 $cir0 $cbs0 
$qE1C addPolicerEntry TokenBucket 10 0 
$qE1C addPHBEntry  0 1 0 
$qE1C addPHBEntry 10 0 0 
$qE1C configQ 0 0 10 20 0.99 
$qE1C configQ 1 0  0  0 1.00 
 
 
# Set DS RED parameters from Core to Edge2: 
$qCE2 meanPktSize $packetSize 
$qCE2 set numQueues_ 2 
$qCE2 setNumPrec 1  
$qCE2 addPHBEntry  0 1 0 
$qCE2 addPHBEntry 10 0 0 
$qCE2 configQ 1 0  0  0 1.00 
$qCE2 configQ 0 0 10 20 0.10 
 
 
# Set up one connection between good source and the destination: 
set udp1 [new Agent/UDP/Sniffer] 
$udp1 set packetSize_ $packetSize 
$udp1 set prio_ 0 
$source1 attach $udp1 $udpPort 
set valid_traffic [new Application/Traffic/$traf_type] 
$valid_traffic attach-agent $udp1 
$valid_traffic set packet_size_ $packetSize 
$valid_traffic set rate_ $rate0 
$valid_traffic set random_ 1 



80 

# $valid_traffic set burst_time_ $burstTime 
# $valid_traffic set idle_time_ $idleTime 
# $valid_traffic set shape_ $parShape 
 
 
#null sink for traffic to dest 
set null1 [new Agent/Null] 
$dest attach $null1 $udpPort 
$ns connect $udp1 $null1 
 
 
# Set up control agent at attacker 
set attk1 [new Agent/UDP/Controller] 
$attk1 set packetSize_ $packetSize 
$attk1 set prio_ 0 
$attacker attach $attk1 
 
#connect this controller to the sniffer on source1 
$udp1 set-controller $attk1 
 
# create zombie agents 
set f1 [new Agent/UDP/Flood] 
set f2 [new Agent/UDP/Flood] 
 
 
#create cbr sources to attach to zombies 
set cbr1 [new Application/Traffic/CBR] 
$cbr1 attach-agent $f1 
$cbr1 set packet_size_ $packetSize 
$cbr1 set rate_ $rate1 
$cbr1 set random_ 1 
set cbr2 [new Application/Traffic/CBR] 
$cbr2 attach-agent $f2 
$cbr2 set packet_size_ $packetSize 
$cbr2 set rate_ $rate1 
$cbr2 set random_ 1 
 
#attach flood agents to nodes 
$flood1 attach $f1 $udpPort 
$flood2 attach $f2 $udpPort 
 
#connect zombie agents to dest agent 
#set null2 [new Agent/Null] 
#$dest attach $null2 5 
$ns connect $z1 $null1 
$ns connect $z2 $null1 
 
#add flooders to controller 
$attk1 add-flooder $z1 
$attk1 add-flooder $z2 
 
$udp1 set class_ 1 
$f1 set class_ 2 
$f2 set class_ 3 
 
$ns color 1 Green 
$ns color 2 Red 



81 

$ns color 3 Black 
 
# Set up icmp agents at the good source node and the DS Edge 
set icmp1 [new Agent/ICMP] 
$source1 attach $icmp1 $icmpPort 
 
set icmp2 [new Agent/ICMP] 
$edge1 attach $icmp2 $icmpPort 
 
#need to let this queue know what it's attached icmp agent is 
#so it can tell the agent to send feedback msgs 
$qE1C set-icmp-agent $icmp2 
$ns connect $icmp1 $icmp2 
 
#tracing and mointoring objects 
set dropt [$ns create-trace Drop $dest_trace $source1 $dest] 
$ns drop-trace $edge1 $core $dropt 
 
$qE1C printPolicyTable 
$qE1C printPolicerTable 
 
$ns at 0.1 "$valid_traffic start" 
$ns at 0.5 "$qE1C printStats" 
$ns at 0.5001 "$cbr1 start" 
$ns at 0.5003 "$cbr2 start" 
$ns at 1.50 "$qE1C printStats" 
 
$ns at $testTime "$valid_traffic stop" 
$ns at $testTime "$cbr1 stop" 
$ns at $testTime "$cbr2 stop" 
$ns at [expr $testTime + 0.2] "$qE1C printStats" 
$ns at [expr $testTime + 0.21] "finish" 
 
$ns run 
 



82 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



83 

REFERENCES 

[BRAUN02] M. Braun and G. Xie.  “A Feedback Mechanism for  

Mitigating Denial of Service Attacks against Differentiated Services 

Clients,” paper presented at the 10th International Conference on 

Telecommunications Systems, Modeling, and Analysis. Monterey, 

California. 4 October 2002. 

[FALL02] K. Fall and K. Varadhan, eds.  The ns Manual.  February 2002.  

Available at http://www.isi.edu/nsnam/ns/ns-documentation.html. 

[LEE01] H. Lee and K. Park. On The Effectiveness of Probabilistic Packet 

Marking for IP Traceback Under Denial of Service Attack.  Proceedings 

of IEEE INFOCOM 2001, Anchorage, Alaska. April 2001. 

[NS02] “The Network Simulator – ns2.” [http://www.isi.edu/nsnam/ns/]. 

September 2002. 

[PARK01] K. Park and H. Lee. On the Effectiveness of Route-Based Packet 

Filtering for Distributed DoS Attack Prevention in Power-Law Internets.   

Proceedings of ACM SIGCOMM 2001 Conference, pp. 15-26, Zurich, 

Switzerland, September 2001. 

[RFC791] J. Postel, ed, Internet Protocol. RFC 791, IETF, September 1981. 

[RFC864] J. Postel. Character Generator Protocol. RFC 864, IETF, May 1983. 

[RFC1810] J. Touch. Report on MD5 Performance. RFC 1810, IETF, June 1995. 

[RFC2402] S. Kent and R. Atkinson. IP Authentication Header. RFC 2402, IETF, 

November 1998. 

[RFC2474] K. Nichols, S. Blake, F. Baker, and D. Black.  Definition of the 

Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.  

RFC 2474, IETF, December 1998. 



84 

[RFC2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss. An 

Architecture for Differentiated Services, RFC 2475, IETF, December 

1998. 

[RFC2827] P. Ferguson and D. Senie.  Network Ingress Filtering: Defeating Denial 

of Service Attacks which Employ IP Source Address Spoofing.  RFC 

2827, May 2000. 

[RIPEMD96] H. Dobbertin, A. Bosselaers, B. Preneel, ``RIPEMD-160, a strengthened 

version of RIPEMD,'' Fast Software Encryption, LNCS 1039, D. 

Gollmann, Ed., Springer-Verlag, 1996, pp. 71-82. 

[SAVAGE00] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.  Practical Network 

Support for IP Traceback.  Proceedings of ACM SIGCOMM 2000 

Conference, pp. 295-306, Stockholm, Sweden, August 2000. 

[YAU01] D. Yau, F. Liang, and J. Lui.  On Defending against Distributed Denial-

of-service Attacks with Server-centric router throttles.  Technical Report, 

CERIAS and Department of Computer Science, Purdue University.  May 

2001. 



85 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Prof. Geoffrey Xie, Code CS/Xg 
Naval Postgraduate School 
Monterey, California  
 

4. Lieutenant Matthew Braun 
1938 N. Fairfield 
Chicago, IL, 60647 
 


